Path: Math/Solvers
% Use bisection method to find the zero crossing of a function. The limits are evaluated before the algorithm begins. If both values either less than or greater than zero, the function returns an appropriate message and n will be 0. Since version 10. -------------------------------------------------------------------------- Form: [x,n] = BisectionZero( f, x0, xLim, xTol, nmax ) -------------------------------------------------------------------------- ------ Inputs ------ f (1,1) Function handle x0 (1,1) Initial guess for x xLim (1,2) Limits for x: [min,max] xTol (1,1) Tolerance for exit nmax (1,1) Maximum iterations ------- Outputs ------- x (1,1) Value of x for f(x) = 0 n (1,1) Number of iterations (number of function evaluations) msg (1,:) Message if boundary failure --------------------------------------------------------------------------
Back to the Math Module page