Path: AerospaceUtils/CAD
% Compute a transformation matrix from a bHinge data structure. There are four possiblities: 1) You can just input a transformation matrix by entering only the b field. 2) You can input a quaternion by just entering the q field. This supercedes a b field. 3) You can input an angle and axis of rotation (1=x,2=y,3=z). If no axis is specified, the rotation will be about the positive z-axis. This supercedes a quaternion. 4) If you enter the angle field and the b field, the output transformation matrix will be the total rotation first through the angle about the specified axis followed by rotation through the initial b matrix. If no axis is specified, the rotation will be about the positive z-axis. They are executed in -------------------------------------------------------------------------- Form: b = BHinge( bHinge ) -------------------------------------------------------------------------- ------ Inputs ------ bHinge (.) .b (3,3) Transformation matrix .q (4,1) Quaternion .angle (1,1) Angle of rotation (radians) .axis (1,1) Axis of rotation 1=x, 2=y, 3=z (default) Positive integer means transform from unrotated to rotated, negative means reverse or (3,1) Axis of rotation - see AUToQ ------- Outputs ------- b (3,3) Rotation matrix --------------------------------------------------------------------------
Common: General/IsValidField Common: Quaternion/AU2Q Common: Quaternion/Q2Mat
Back to the AerospaceUtils Module page