Contents
Fusion Reactor Design demo
Reproduce the figures/tables from the original reference paper. Each time you call the function you specify the mode, which is the dependent variable that you're interested in. ------------------------------------------------------------------------ Reference: Freidberg, Mangiarotti, and Minervini, "Designing a tokamak fusion reactor--How does plasma physics fit in?" Physics of Plasmas 22, 070901 (2015). ------------------------------------------------------------------------ See also FusionReactorDesign ------------------------------------------------------------------------
%-------------------------------------------------------------------------- % Copyright (c) 2022 Princeton Satellite Systems, Inc. % All rights reserved. Since version 2022.1 %--------------------------------------------------------------------------
Set up input data structures for each variable sweep (a,H,B_max,P_E,P_W)
% Data structure for the case that the input variable is the plasma minor % radius, a. Note that the default data structure does not need to be % altered in this case, since the default data was chosen to reproduce % the first results figure, Figure 5, in the reference. d_a = FusionReactorDesign; % Compute plots ("curves") and tables ("parameters") from the reference d_a = FusionReactorDesign(d_a,'a'); % Data structure for the case that the input variable is the H-mode % enhancement factor, H d_H = FusionReactorDesign; d_H.B_max = 13; d_H.H = 1.26; d_H.P_E = 1000; % electric power output [MW] d_H.P_W = 4; % max neutron wall loading [MW/m2] d_H.a = 1.26; % Compute plots and table from the reference d_H = FusionReactorDesign(d_H,'H'); % Data structure for the case that the input variable is the maximum % magnetic field at the coil, B_max. d_Bmax = FusionReactorDesign; d_Bmax.B_max = 17.6; d_Bmax.H = 1; d_Bmax.P_E = 1000; % electric power output [MW] d_Bmax.P_W = 4; % max neutron wall loading [MW/m2] d_Bmax.a = 0.97; % We will also specify the minimum, maximum, and length of the input vector % in this case. pmin = 10; pmax = 25; n = 100; % Compute plots and table from the reference d_Bmax = FusionReactorDesign(d_Bmax,'B_max',pmin,pmax,n); % Data structure for the case that the input variable is the electric power % output, P_E d_PE = FusionReactorDesign; d_PE.B_max = 13; d_PE.H = 1; d_PE.P_E = 1554; % electric power output [MW] d_PE.P_W = 4; % max neutron wall loading [MW/m2] d_PE.a = 1.44; % Compute plots and table from the reference d_PE = FusionReactorDesign(d_PE,'P_E'); % Data structure for the case that the input variable is maximum input wall % loading, P_W d_PW = FusionReactorDesign; d_PW.B_max = 13; d_PW.H = 1; d_PW.P_E = 1000; % electric power output [MW] d_PW.P_W = 2.1; % max neutron wall loading [MW/m2] d_PW.a = 1.35; % Compute plots and table from the reference d_PW = FusionReactorDesign(d_PW,'P_W'); % Display output tables (these correspond to the various columns, in order, % in Table III of the reference) disp(d_a.parameters) disp(d_H.parameters) disp(d_Bmax.parameters) disp(d_PE.parameters) disp(d_PW.parameters) %-------------------------------------- % $Id: 0c42080762886b3751bf661818ff650348f32380 $
Quantity Output _________________ _______ {'Bmax(T)' } 13 {'H' } 1 {'PE(MW)' } 1000 {'PW(MW/m^2)' } 4 {'VI/PW(m^3/MW)'} 1.0155 {'Q||(MW-T/m)' } 498.85 {'B0(T)' } 6.8768 {'a(m)' } 1.34 {'c(m)' } 0.97045 {'R0(m)' } 5.3849 {'R0/a' } 4.0186 {'p(atm)' } 7.5459 {'n(10^20 m^-3)'} 1.4203 {'n/nG' } 0.5604 {'tauE(s)' } 0.94747 {'I(MA)' } 14.219 {'beta(%)' } 4.0635 {'beta/betaT' } 0.93794 {'qstar' } 1.5598 {'qK/qstar' } 1.2822 {'fB' } 0.83916 {'fB/fNC' } 1.8927 Quantity Output _________________ _______ {'Bmax(T)' } 13 {'H' } 1.26 {'PE(MW)' } 1000 {'PW(MW/m^2)' } 4 {'VI/PW(m^3/MW)'} 1.0845 {'Q||(MW-T/m)' } 506.2 {'B0(T)' } 7.4045 {'a(m)' } 1.26 {'c(m)' } 0.98031 {'R0(m)' } 5.7139 {'R0/a' } 4.5349 {'p(atm)' } 7.7731 {'n(10^20 m^-3)'} 1.463 {'n/nG' } 0.72878 {'tauE(s)' } 0.91978 {'I(MA)' } 10.003 {'beta(%)' } 3.6104 {'beta/betaT' } 1.202 {'qstar' } 1.9982 {'qK/qstar' } 1.0009 {'fB' } 0.77237 {'fB/fNC' } 1 Quantity Output _________________ _______ {'Bmax(T)' } 17.6 {'H' } 1 {'PE(MW)' } 1000 {'PW(MW/m^2)' } 4 {'VI/PW(m^3/MW)'} 1.8877 {'Q||(MW-T/m)' } 654.47 {'B0(T)' } 12.442 {'a(m)' } 0.97 {'c(m)' } 1.6387 {'R0(m)' } 7.4262 {'R0/a' } 7.6559 {'p(atm)' } 8.8615 {'n(10^20 m^-3)'} 1.6679 {'n/nG' } 0.64247 {'tauE(s)' } 0.8068 {'I(MA)' } 7.6584 {'beta(%)' } 1.4577 {'beta/betaT' } 0.8196 {'qstar' } 1.9978 {'qK/qstar' } 1.0011 {'fB' } 0.6843 {'fB/fNC' } 1 Quantity Output _________________ _______ {'Bmax(T)' } 13 {'H' } 1 {'PE(MW)' } 1554 {'PW(MW/m^2)' } 4 {'VI/PW(m^3/MW)'} 1.1785 {'Q||(MW-T/m)' } 668.51 {'B0(T)' } 8.5718 {'a(m)' } 1.44 {'c(m)' } 1.0666 {'R0(m)' } 7.7407 {'R0/a' } 5.3755 {'p(atm)' } 7.2776 {'n(10^20 m^-3)'} 1.3698 {'n/nG' } 0.7971 {'tauE(s)' } 0.9824 {'I(MA)' } 11.144 {'beta(%)' } 2.5223 {'beta/betaT' } 0.99552 {'qstar' } 1.9948 {'qK/qstar' } 1.0026 {'fB' } 0.69587 {'fB/fNC' } 1 Quantity Output _________________ _______ {'Bmax(T)' } 13 {'H' } 1 {'PE(MW)' } 1000 {'PW(MW/m^2)' } 2.1 {'VI/PW(m^3/MW)'} 2.5987 {'Q||(MW-T/m)' } 373.58 {'B0(T)' } 9.7459 {'a(m)' } 1.35 {'c(m)' } 1.1202 {'R0(m)' } 10.191 {'R0/a' } 7.5487 {'p(atm)' } 5.4263 {'n(10^20 m^-3)'} 1.0213 {'n/nG' } 0.68694 {'tauE(s)' } 1.3176 {'I(MA)' } 8.524 {'beta(%)' } 1.4548 {'beta/betaT' } 0.80252 {'qstar' } 1.9912 {'qK/qstar' } 1.0044 {'fB' } 0.66258 {'fB/fNC' } 1