Synchrotron analysis
Compare Bingren's model with the NRL formulary for PFRC relevant parameters
%-------------------------------------------------------------------------- % See also: PowerDHe3, NumberOfElectrons, PlasmaConstant, BField, % Synchrotron %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- % Copyright (c) 2016 Princeton Satellite Systems, Inc. % All rights reserved. %-------------------------------------------------------------------------- % Reactor parameters d = PowerDHe3; d.tE = 30; % keV d.tD = 70; % keV d.tHe3 = 100; % keV d.nD = 1e20; % per m3 d.nHe3 = 3e20; % per m3 Z = [1 2]; % atomic number [D He3] rPlasma = 0.25; % plasma "average" radius lPlasma = 2; % length of separatrix reflection = 0; % wall reflection coefficient (0-1) beta = 0.7; % plasma beta % Number of electrons nE = NumberOfElectrons( [d.nD d.nHe3], Z ); fprintf('\nDensity 3He: %g at %g keV\n',d.nHe3,d.tHe3); fprintf('Density D: %g at %g keV\n',d.nD,d.tD); fprintf('Density e-: %g at %g keV\n',nE,d.tE); % Estimate magnetic field c = PlasmaConstant('kev/m^3 to pa'); p = c*(nE*d.tE + d.nHe3*d.tHe3 + d.nD*d.tD); b = BField( p, beta ); fprintf('Estimated field: %.1f T for beta of %.2f\n',b,beta); % Bingren's model pBingren = Synchrotron( [d.nD d.nHe3], Z, b, d.tE, rPlasma, reflection ); alpha = 1.15; %1.262e-4*alpha*sqrt(nE*(1-reflection)*(0.1*tE*b).^5/rPlasma) % Bingren's paper: should be in range 0.05to 0.25 MW/m3 Synchrotron( [1 1]/3*1e20, [1 2], 2.7, 20, 2.5, 0 ) Synchrotron( [1 1]/3*1e20, [1 2], 2.7, 50, 2.5, 0 ) Synchrotron( [1 1]/3*1e20, [1 2], 2.7, 90, 2.5, 0 ) % NRL Formulary - use CGS units % "cyclotron" radiation % assume only 10% of the volume is emitting for this relation Pc = 6.21e-28*(b*1e4)^2*nE*1e-6*d.tE*1e3; fracC = 0.1; % isothermal plasma (beta = 1) Pi = 5e-38*(nE*1e-6)^2*(d.tE*1e3)^2; fracI = 0.1; % Estimated reactor power volume = 2/3*pi*rPlasma^2*lPlasma; [pF, pN, pB] = PowerDHe3( d ); fprintf('\nFusion power: %f MW\n',pF*volume); fprintf(' Plasma radius: %g m\n',rPlasma); fprintf(' Plasma length: %g m\n',lPlasma); fprintf('Synchrotron, Bingren: %f MW\n',pBingren*volume); fprintf('Synchrotron, NRL: %f MW\n',Pc*volume*fracC); fprintf('Synchrotron, Iso: %f MW\n',Pi*volume*fracI); fprintf('Bingren: %.1f%% \n',pBingren/pF*100); fprintf('Isothermal @ 10%%: %.1f %%\n',Pi*fracI/pF*100); fprintf('NRL @ 10%%: %.1f %%\n',Pc*fracC/pF*100); %--------------------------------------
Density 3He: 3e+20 at 100 keV Density D: 1e+20 at 70 keV Density e-: 7e+20 at 30 keV Estimated field: 5.8 T for beta of 0.70 Power (MW/m^3) = 0.005953 at Temperature (10 keV) = 2 Power (MW/m^3) = 0.06738 at Temperature (10 keV) = 5 Power (MW/m^3) = 0.3469 at Temperature (10 keV) = 9 Fusion power: 4.025413 MW Plasma radius: 0.25 m Plasma length: 2 m Synchrotron, Bingren: 0.251858 MW Synchrotron, NRL: 1.138935 MW Synchrotron, Iso: 0.577268 MW Bingren: 6.3% Isothermal @ 10%: 14.3 % NRL @ 10%: 28.3 %