‘ PrincetonSATELLITE

CubeSat Toolbox

User’'s Guide
Release 2019.1

This software described in this document is furnished under a license agreement. The software may be used, copied or translated
into other languages only under the terms of the license agreement.

CubeSat Toolbox

a member of the Spacecraft Control Toolbox product family

January 14, 2020

©Copyright 1996-2019 by Princeton Satellite Systems, Inc. All rights reserved.

Any provision of Princeton Satellite System Software to the U.S. Government is with Restricted Rights as follows: Use, duplication,
or disclosure by the Government is subject to restrictions set forth in subparagraphs (a) through (d) of the Commercial Computer
Restricted Rights clause at FAR 52.227-19 when applicable, or in subparagraph (c)(1)(ii) of the Rights in Technical Data and Com-
puter Software clause at DFARS 252.227-7013, and in similar clause in the NASA FAR Supplement. Any provision of Princeton
Satellite Systems documentation to the U.S. Government is with Limited Rights. The contractor/manufacturer is Princeton Satellite
Systems, Inc., 6 Market St. Suite 926, Plainsboro, New Jersey 08536.

Wavefront is a trademark of Alias Systems Corporation. MATLAB is a trademark of the MathWorks.

All other brand or product names are trademarks or registered trademarks of their respective companies or organizations.

Princeton Satellite Systems, Inc.
6 Market St. Suite 926
Plainsboro, New Jersey 08536

Technical Support/Sales/Info: http://www.psatellite.com

CubeSat Toolbox il

CONTENTS

CubeSat Toolbox
Contents
List of Figures

1 Introduction

L1 Organization o ot o e e e e e e e e e e
1.2 Requirements o v i i i e e e e e e e e e e e e e
1.3 Installation e e e
1.4 Getting Started e e e e e
2 Getting Help
2.1 MATLAB’s Built-in Help System
22 CommandLine Help e
23 FileHelp o o
24 SearchinginFileHelp e
2.5 DemoPSS . . .
2.6 Graphical User Interface Help e
2.7 Technical SUPPOIt o o e e e e e e e e e e e e

3 Basic Functions

3.1 Introduction e e e e
3.2 Function Features
3.3 Example Functions L
4 CubeSat
4.1 CubeSat Modeling e e e
42 Simulation L e e e e
43 Mission Planning L e e e e e e
4.4 Visualization e e e e e e e e e
4.5 Subsystems Modeling e e e e
5 Coordinates
5.1 Transformation Matrices 0 e e
5.2 QUAterNionSt e e e e e e e e e
5.3 Coordinate Frames e

6 Coordinate Frames

6.1 OVErVIEW e e e e e
6.2 Orbital Element Sets o e e e
6.3 Relative Coordinate Systems e e e e e

iii

15
15
15
18

23
24
26
29
30
32

33
33
34
35

CONTENTS CONTENTS

CubeSat Toolbox iv

LIST OF FIGURES

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
32
33

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
52
53

6.1
6.2

MATLAB Help - Supplemental Software 4
Toolbox Documentation Main Page, R2016b 5
Toolbox Documentation, R2011b e 5
Toolbox Demos e e 6
Thefilehelp GUI 10
Thedemo GUI 12
On-line Help o e 13
Atmospheric density from AtmDens2 e e e e e e e 17
Elliptical orbit from RVEromKepler v vt ittt e e e e e e e e 18
Asinewave using P1ot2D ool e e e e e e e 20
Model of 2U CubeSat e e 25
Orbit simulation timestep results, simple on the left with with disturbances on the right. 27
Orbit evolution for an initial separationof 10meters 27
CubeSatSimulationexampleresults e 28
Observation time Windows L.l e e e e e 29
RapidSwathbuilt-indemoresults L 30
Orbit visualization with P1otOrbit and GroundTrack oo v v v v 30
CubeSat model with deployable solar panels viewed with DrawCubeSat 31
Spacecraft visualization with sight lines using DrawSpacecraftInOrbit 31
Playback demo using PlaybackOrbitSim oL 32
Frames Aand B L 33
Selenographic to ECIframe e 35
Areocentric frame L L L L e e e 36
Relative Orbit Coordinate Frames . e 39
Geometric Parameters for Circular Orbits e 40

LIST OF FIGURES LIST OF FIGURES

CubeSat Toolbox vi

CHAPTER 1

INTRODUCTION

This chapter shows you how to install the CubeSat Toolbox and how it is organized.

1.1 Organization

The CubeSat Toolbox is composed of MATLAB m-files and mat-files, organized into a set of modules by subject.
It is essentially a library of functions for analyzing spacecraft and missions. The CubeSat toolbox is a subset of
the Spacecraft Control Toolbox, which supports a set of scripts for analyzing mission planning, attitude control, and
simulation of nano satellites. The Spacecraft Control Toolbox is composed of a set of modules including CubeSat ,
and that organization is preserved in the CubeSat Toolbox.

There is a substantial set of software which the Spacecraft Control Toolbox shares with the Aircraft Control Toolbox,
and this software is in a module called Common. The core spacecraft analysis functions are in SC along with an
animation tool in Plotting. These modules with CubeSat are referred to together as the Core toolbox. All of the
Spacecraft Control Toolbox modules are described in the following table, including the add-on modules which are
purchased separately.

Table 1.1: Spacecraft Control Toolbox Modules

Module \ Function

CubeSat CubeSat and nanonsatellite modeling

Common Coordinate transformations, math, control, CAD tools, time conversions, graph-
ics and general utilities

Plotting Plotting tools for complex simulations including animation

SC Attitude dynamics, pointing budgets, basic orbit dynamics, environment, sample
CAD models, ephemeris, sensor and actuator modeling.

SCPro Additional high-fidelity models for environment, sensors, actuators.

AttitudeControl In-depth attitude control system design examples, including the hypothetical
geosynchronous satellite ComStar

Estimation Attitude and orbit estimation. Stellar attitude determination and Kalman filtering.

Imaging Image processing functions

Link Basic RF and optical link analysis.

Orbit Orbit mechanics, maneuver planning, fuel budgets, and high-fidelity simulation.

Power Basic power modeling

Propulsion Electric and chemical propulsion. Launch vehicle analysis.

Thermal Basic thermal modeling

Launch Vehicle |Add-On|Launch vehicle design

Formation Flying | Add-On|Formation flying control

Fusion Propulsion | Add-On | Fusion propulsion analysis

1.2. REQUIREMENTS CHAPTER 1. INTRODUCTION

SAAD Add-On | Spin axis attitude determination
Solar Sail Add-On | Solar sail control and mission analysis

The Formation Flying, Solar Sail, and SAAD add-on modules have their own user’s guides. These modules can be
purchased separately but they require the Professional Edition of the toolbox.

1.2 Requirements

MATLAB 7.0 at a minimum is required to run all of the functions. Most of the functions will run on previous versions
but we are no longer supporting them.

1.3 Installation

The preferred method of delivering the toolbox is a download from the Princeton Satellite Systems website. Put the
folder extracted from the archive anywhere on your computer. There is no “installer” application to do the copying for
you. We will refer to the folder containing your modules as PSSToolboxes. If you later purchase an add-on module,
you would simply add it to this folder.

All you need to do now is to set the MATLAB path to include the folders in PSSToolboxes. We recommend using
the supplied function PSSSetPaths.m instead of MATLAB’s path utility. From the MATLAB prompt, cd to your
PSSToolboxes folder and then run PSSSetPaths. For example:

>> cd /Users/me/PSSToolboxes
>> PSSSetPaths

This will set all of the paths for the duration of the session, with the option of saving the new path for future sessions.

1.4 Getting Started

The first two functions that you should try are DemoPSS and FileHelp. Each toolbox or module has a Demos
folder and a function DemoP SS. Do not move or remove this function from any of your modules! DemoP SS . m looks
for other DemoP S S functions to determine where the demos are in the folders so it can display them in the DemoP SS
GUL

The FileHelp function provides a graphical interface to the MATLAB function headers. You can peruse the functions
by folder to get a quick sense of your new product’s capabilities and search the function names and headers for
keywords. FileHelp and DemoPSS provide the best way to get an overview of the Spacecraft Control Toolbox.
Both are described in more detail in the next chapter.

Demos and Functions can also be browsed by MATLAB’s built-in help system. sThis allows for the same searching
and browsing capabilities as DemoPSS and FileHelp.

CubeSat Toolbox 2

CHAPTER 2

GETTING HELP

This chapter shows you how to use the help systems built into PSS Toolboxes. There are several sources of help.
Our toolboxes are now integrated into MATLAB’s built-in help browser. Then, there is the MATLAB command line
help which prints help comments for individual files and lists the contents of folders. Then, there are special help
utilities built into the PSS toolboxes: one is the file help function, the second is the demo functions and the third
is the graphical user interface help system. Additionally, you can submit technical support questions directly to our
engineers via email.

2.1 MATLAB’s Built-in Help System

2.1.1 Basic Information and Function Help

Our toolbox information can now be found in the MATLAB help system. To access this capability, simply open the
MATLAB help system. As long as the toolbox is in the MATLAB path, it will appear in the contents pane. In more
recent versions of MATLAB, you need to navigate to Supplemental Software from the main window, as shown in
Figure 2.1 on the following page. The index page of the SCT documentation is shown in Figure 2.2 on page 5.

The help window from R2011b and earlier is depicted in Figure 2.3 on page 5.

This contains a lot information on the toolbox. It also allows you to search for functions as you would if you were
searching for functions in the MATLAB root.

2.1.2 Published Demos

Another feature that has been added to the MATLAB help structure is the access to all of the toolbox demos. Every
single demo is now listed, according to module and the folder. These can be found under the Other Demos or Examples
portion of the Contents Pane. Each demo has its own webpage that goes through it step by step showing exactly what
the script is doing and which functions it is calling. From each individual demo webpage you can also run the script
to view the output, or open it in the editor. Note that you might want to save any changes to the demo under a new file
name so that you can always have the original. Below is an example of demo page displayed in MATLAB help that
shows where to find the toolbox demos as well as the the hierarchal structure used for browsing the demos.

2.1. MATLAB’S BUILT-IN HELP SYSTEM CHAPTER 2. GETTING HELP

Figure 2.1: MATLAB Help - Supplemental Software
| NON Help
o o k- B | MATLAB Documentation yql +] H O BH n ~

Documentation Search Help

= CONTENTS
MATLAB Getting Started with MATLAB
MATLAB® is the high-level language and interactive environment used by Functions in MATLAE

millions of engineers and scientists worldwide. The matrix-based language is a

. . Release Notes
natural way to express computational mathematics.

Installation
My Products Edit Preferences
MATLAB® Family Hardware Support
MATLAB For a complete list of hardware solutions, see Hardware

Support.

Math, Statistics, and Optimization

Optimization Toolbox

Supplemental Software

Formation Flying SCT Toolbox
Spacecraft Control Toolbox

CubeSat Toolbox 4

CHAPTER 2. GETTING HELP 2.1. MATLAB’S BUILT-IN HELP SYSTEM

Figure 2.2: Toolbox Documentation Main Page, R2016b
[NoN] Help
€0 g 80 index x| 4| E o =i -

Search Help

Documentation

= COMNTENTS Close

< Documentation Home

PrincetonSATELLITE

SYSTEMS

Spacecraft Control Toolbox

trol Toolbo
Software)
What's Included Welcome to the Spacecraft Control Toolbox for MATLAB. This help documentation
> New Features containg many resources to assist you in using this software. We at Princeton Satellite

Systems thank you for your interest in our product. You can always find more information on

Getting Started this or any of our other products on our website: www.psatellite.com

Add-on Modules
GUI Help Contents

v

w

Functions Requirements

What's Included
Installation
What's New
Getting started
Add-on Modules
GUI Help
Demos
Functions

Examples

Requirements

MATLAB 2009b at a minimum is required to run all of the functions. Most of the functions
will run on previous versions but we are no longer supporting earlicr versions of MATLAB.

‘What's Included

f TR USRS R B S T U UVOYL S | L NN SN TR U (R NN . P U OO S

Figure 2.3: Toolbox Documentation, R2011b

+ Search # - s & FRSCGen =
tm Search Results j—_ FRSCGen:
& Release Notes DO - £ T S e e e e P e
anﬂ‘ﬂlat'on Executes the fast reorientation system slew maneuver.
'IQMATLAE Thiasa is a combination of both the FRSProp and FRSTorque functior
QEP“EUHR Contral Toolbg i.e. It computes the maneuver torgue and updates the model at &l
< What's Included same rate.
ol Installation = Pl s e e e e e e e e e e e e e o
L New Features Formi
B CettingStarted [qreftold, modelrate, tfirs, xmodel, umnvri, umnvr, xf]

= PRECGen| axiald, af, bf, cf, df, xmodel, tbbscale, gqreftoldi,

k Demos e E
. amave, =f, dt, nhalf, rate, iner, maxacesl, i)

v fx Functions
¥ fr AttitudeControl
¥ fx AttitudeManeuvdl|l = 0o

fx FRSCCen Inputs

Jf= FRSMPlan [N @ =-==--

fx FRSProp axial (3,1 The maneuver axis unit vector
fx FRSTarg af {m,n) The shaping filter plant matrix
- (s o1 Tha ahamine Filtar inmnt matris

CubeSat Toolbox 5

2.1. MATLAB’S BUILT-IN HELP SYSTEM CHAPTER 2. GETTING HELP

Figure 2.4: Toolbox Demos

File Edit View GCo Favorites Desktop Window Help

[@-seach | & 4= = & «Spacecraft Control » AttitudeControl » ACSDesigns » =

_ = ~ Spacecraft Control Toolbox DEMOS
» & Release Notes Contains all the demo files for the Spacecraft Control
» & Installation
> & MATLAB
» @ Spacecraft Control Toolbox
¥ 'y Other Demos ACSDesigns

v 'y Spacecraft Control e
¥ AttitudeControl
- | | FRSSim: Simulate the fast reorientation system.
» AttitudeManeuver
¥ ComStar
» Common e
» Orbit _ .
» Plotting I
* Propulsion i
» SC
» Sail o
MagSim: Simulate a momentum bias spacecraft with
W ool magnetic roll'yaw control.

For more info see psatellite.com

MagControl: Demonstrate the magnetic controllers.

ERER | | TMAPSIm: Implements and simulates the MAP
normal mode control.

4

CubeSat Toolbox 6

CHAPTER 2. GETTING HELP 2.2. COMMAND LINE HELP

2.2 Command Line Help

You can get help for any function by typing
>> help functionName

For example, if you type

>> help C2DZOH

you will see the following displayed in your MATLAB command window:

Create a discrete time system using a zero order hold.

Create a discrete time system from a continuous system
assuming a zero-order-hold at the input.

Given
x = ax + bu

Find f and g where

x (k+1) = fx (k) + gu(k)

Form

[f, g] = C2DZOH(a, b, T)

Inputs

a (n, n) Continuous plant matrix

b (n, m) Input matrix

T (1,1) Time step

Outputs

f (n,n) Discrete plant matrix
(n, m) Discrete input matrix

References: Van Loan, C.F., Computing Integrals Involving the Matrix

Exponential, IEEE Transactions on Automatic Control
Vol. AC-23, No. 3, June 1978, pp. 395-404.

All PSS functions have the standard header format shown above. Keep in mind that you can find out which folder a
function resides in using the MATLAB command which, i.e.

>> which C2DZOH
Core/Common/Control/C2DZOH.m

When you want more information about a folder of interest, you can get a list of the contents in any directory by using
the he1p command with a folder name. The returned list of files is organized alphabetically. For example,

>> help Atmosphere
Common/Atmosphere

CubeSat Toolbox 7

2.2. COMMAND LINE HELP CHAPTER 2. GETTING HELP

SimpAtm - Simplified atmosphere model.
StdAtm - Computes atmospheric density based on the standard atmosphere model.

If there is a folder with the same name in a Demos directory, the demos will be listed separately. For example,

>> help Plugins

Common/Plugins
T
Telemetry — Generates a set of telemetry pages.
TelemetryOffline — This plots telemetry files previously saved
by Telemetry.
TelemetryPlot — Plot real time in a single window.
TimePlugIn — Create a time GUI plug in.
Common/Demos/Plugins
T
TelemetryDemo — Demonstrate the Telemetry function.

In the case of a demo, the command line help will provide a link to the published HTML for that demo, if any exists.
Any functions referenced on a See also line will have dynamic links, which will show the help for that function.

>> help FFSimDemo Demonstrate the use of FFSim to analyze disturbance effects.

77 See also
FFSim, FFSimPlotter, Goals2DeltaElem ——————————————————————————— =

(c) 2009 Princeton Satellite Systems, Inc. All rights reserved. - —-
Since version 8. ——————— - T oo
Published output in the Help browser showdemo FFSimDemo

To see the entire contents of a file at the command line, use type.

Command line help also works with higher level directories, for instance if you ask for help on the Common directory,
you will get a list of all the subdirectories.

>> help Common
PSS Toolbox Folder Common
Version 2019.1 23-Dec-2019

Directories:
CommonData
ComponentModels
Control
Database
FileUtils

GUIs

General
Graphics

Help
MassProperties
Materials
Plugins
Quaternion
Time

Transform

CubeSat Toolbox 8

CHAPTER 2. GETTING HELP

2.3. FILEHELP

The function ver lists the current version of all your installed toolboxes. Each Core module that you have installed

will be listed separately. For instance,

MATLAB Version: 9.6.0.1072779 (R2019a)

MATLAB License Number: 346509

Operating System: Mac OS X Version:

10.15.2 Build:

19C57

Java Version: Java 1.8.0_181-bl3 with Oracle Corporation Java

Server VM mixed mode

HotSpot (TM) 64-Bit

MATLAB
)
Deep Learning Toolbox
)
Image Acquisition Toolbox
)
Image Processing Toolbox
)
Instrument Control Toolbox
)
Optimization Toolbox
)
PSS Toolbox Folder AerospaceUtils
PSS Toolbox Folder Common
PSS Toolbox Folder CubeSat
PSS Toolbox Folder Electrical

PSS Toolbox Folder FormationFlying

PSS Toolbox Folder Link

PSS Toolbox Folder Math

PSS Toolbox Folder Orbit
PSS Toolbox Folder Plotting
PSS Toolbox Folder SC

PSS Toolbox Folder SCPro

2.3 FileHelp

Version

Version

Version

Version

Version

Version

Version
Version
Version
Version
Version
Version
Version
Version
Version
Version
Version

2019.
2019.
2019.
2019.
2019.
2019.
2019.
2019.
2019.
2019.
2019.

I I e = = T = Sy =

(R2019a

(R2019a

(R2019a

(R2019a

(R2019a

(R2019%a

2.3.1 Introduction

When you type

FileHelp

the FileHelp GUI appears, Figure 2.5 on the next page.

There are five main panes in the window. On the left hand side is a display of all functions in the toolbox arranged
in the same hierarchy as the PSSToolboxes folder. Scripts, including most of the demos, are not included. Below
the hierarchical list is a list in alphabetical order by module. On the right-hand-side is the header display pane.
Immediately below the header display is the editable example pane. To its left is a template for the function. You can

cut and paste the template into your own functions.

The buttons along the bottom provide additional controls along with the search feature. Select the “Search String”
text and replace it with your own text, for example “sun”. Then click either the Search File Names button or Search

Headers.

CubeSat Toolbox

2.3. FILEHELP CHAPTER 2. GETTING HELP

Figure 2.5: The file help GUI
%

File Edit View Insert Tools Desktop Window Help

PrincetonSATELLI

SYSTEMS Computes the gain for desired pole locations using Ackermann's
formula so that a-bk has the desired poles.

Form:
k = acker{ a, b, p }

Plant matrix
Input matrix
Pole locations

Foans [o] s raes][Sown s || seomromo || rnEeamoe] s Emmme]| oo]| o |

CubeSat Toolbox 10

CHAPTER 2. GETTING HELP 2.4. SEARCHING IN FILE HELP

2.3.2 The List Pane

If you click a file in the alphabetical or hierarchical lists, the header will appear in the header pane. This is the same
header that is in the file. The headers are extracted from a .mat file so changes you make will not be reflected in the
file. In the hierarchical list, any name with a + or - sign is a folder. Click on the folders until you reach the file you
would like. When you click a file, the header and template will appear.

2.3.3 Edit Button

This opens the MATLAB edit window for the function selected in the list.

2.3.4 The Example Pane

This pane gives an example for the function displayed. Not all functions have examples. The edit display has scroll
bars. You can edit the example, create new examples and save them using the buttons below the display. To run an
example, push the Run Example button. You can include comments in the example by using the percent symbol.

2.3.5 Run Example Button

Run the example in the display. Some of the examples are just the name of the function. These are functions with
built-in demos. Results will appear either in separate figure windows or in the MATLAB Command Window.

2.3.6 Save Example Button

Save the example in the edit window. Pushing this button only saves it in the temporary memory used by the GUL
You can save the example permanently when you Quit.

2.3.7 Help Button

Opens the on-line help system.

2.3.8 Quit

Quit the GUL. If you have edited an example, it will ask you whether you want to save the example before you quit.

2.4 Searching in File Help

2.4.1 Search File Names Button

Type in a function name in the edit box and push the button called Search File Names.

2.4.2 Find All Button

Find All returns to the original list of the functions. This is used after one of the search options has been used.

CubeSat Toolbox 11

2.5. DEMOPSS CHAPTER 2. GETTING HELP

2.4.3 Search Headers Button

Search headers for a string. This function looks for exact, but not case sensitive, matches. The file display displays all
matches. A progress bar gives you an indication of time remaining in the search.

2.4.4 Search String Edit Box

This is the search string. Spaces will be matched so if you type “attitude control” it will not match “attitude control”
(with two spaces.)

2.5 DemoPSS

If you type DemoP SS you will see the GUI in Figure 2.6. This predates MATLAB’s built-in help feature and provides
an easy way to run the scripts provided in the toolbox. The list on the left-hand-side is hierarchical and the top level
follows the organization of your toolbox modules. Most folders in your modules have matching folders in Demos with
scripts that demonstrate the functions. The GUI checks to see which directories are in the same directory as DemoP SS
and lists all directories and files. This allows you to add your own directories and demo files.

Click on the first name to open the directory. The + sign changes to - and the list changes. Figure 2.6 shows the
Common/Control folder in the core toolbox. The hierarchical menu shows the highest level folders.

Figure 2.6: The demo GUI

eoo PSS Demo
File Edit View Insert Tools Desktop Window Help

PrincetonSATELLITE D e m o s
ESY¥STEMS

B . Demanstrate full state feedback. Steps:
§§ﬁ£_1 1. Bun this dema. The plant 'Doubleintegrator.mat’ will be saved in SCData.
|]
ModelMatchingContral o 2. Click the plant block in the resulting GUI and load the Doublelntegratar
PIDDeso.o madel inta the plant.
PWMVsZ0H .2
E‘E??'—ggﬁﬂ‘—rﬁ'—] 3. Enter into LQ pane: Select the Full State Feaedback option
TFilL 0
= Q: wg
TRIDSAL.m Rrower
Toimplex.:
TSmaath.m 4. Push Create
sDatabase -
+General " See also statespace, LOC, Step.
+3raphics -
+Help
Show the Script Run the Dema Stop the Dema Quit Help

Your own demos will appear if they are put in any of the Demos folders. If you would like to look at, or edit, the script,
push Show the Script.

You can also access the published version of the demos using MATLAB’s help system. On recent versions this is
access by selecting Supplemental Software from the main Help window, and then selecting Examples.

CubeSat Toolbox 12

CHAPTER 2. GETTING HELP

2.6. GRAPHICAL USER INTERFACE HELP

2.6 Graphical User Interface Help

Each graphical user interface (GUI) has a help button. If you hit the help button a new GUI will appear. You can
access on-line help about any of the GUIs through this display. It is separate from the file help GUI described above.

The same help is also available in HTML through the MATLAB help window.

The HelpSystemdisplay is hierarchical. Any list item with a + or - in front is a help heading with multiple subtopics.
+ means the heading item is closed, - means it is open. Clicking on a heading name toggles it open or closed. Figure 2.7
shows the display with the Telemetry help expanded. If you click on a topic in the list you will get a text display in the
right-hand pane. You can either search the headings or the text by entering a text string into the Search For edit box

Figure 2.7: On-line Help

O

Online Help

HE

Introduction

+Command Interface
+listirbance Model Tnder.
+F55 Toolbox Help

=Telem=try
Introduction
+Panel=s
+Buttons
Introduction
+Buttons

+CFIl Help

+HergeFroject
+0penFroject
+3etlpFroject

+Telemstry 0ffline

4]k]

Fal s
|

ThisGULallows wou todisplay ar value thet is svailable infelemetne
oucandefine and s telenetiy pages which ey cortainan: nurmberof
telemetry plots. You can also open real=time plots.

This GUI saves all data so youcan replay past data for display.

The buttons at the topof the GUI show every defined telemetry page.
FPush a button toopen another page.

4] k]

Search For |

| | Search Headings I |

Seatrch Text

Restore List

|’fx'

and hitting the appropriate button. Restore List restores the list window to its previous configuration.

2.7 Technical Support

Contact support@psatellite.com for free email technical support. We are happy to add functions and demos for our

customers when asked.

CubeSat Toolbox

13

2.7. TECHNICAL SUPPORT CHAPTER 2. GETTING HELP

CubeSat Toolbox 14

CHAPTER 3

BASIC FUNCTIONS

This chapter shows you how to use a sampling of the most basic CubeSat Control Toolbox functions.

3.1 Introduction

The CubeSat Control Toolbox is composed of several thousand MATLAB files. The functions cover attitude control
and dynamics, computer aided design, orbit dynamics and kinematics, ephemeris, actuator and sensor modeling, and
thermal and mathematics operations. Most of the functions can be used individually although some are rarely called
except by other toolbox functions.

This chapter will review some basic features built into the CCT functions and highlight some examples from the folder
that you will use most frequently.

3.2 Function Features

3.2.1 Introduction

Functions have several features that are helpful to understand. Features that are available in the functions are listed in
Table 3.1.

Table 3.1: Features in Spacecraft Control Toolbox functions

Features

Built-in demos
Default parameters
Built-in plotting
Error checking
Variable inputs

These are illustrated in the examples given below.

3.2.2 Built-in demos

Many functions have built in demos. A function with a built-in demo requires no inputs and produces a plot or other
output for a range of input parameters to give you a feel for the function.

15

3.2. FUNCTION FEATURES CHAPTER 3. BASIC FUNCTIONS

An example of a function with a built-in demo is AnimQ. It creates an example array of quaternions and animates the
resulting body axes. The inputs for the built-in demo are generally specified near the top of the function so it is easy
to check for one by looking at the code. Plots are produced at the bottom of a function.

3.2.3 Default parameters

Most functions have default parameters. There are two ways to get default parameters. If you pass an empty matrix,
ie.

[]

as a parameter the function will use a default parameter if defaults are available. This is only necessary if you wish to
use a default for one parameter and input the value for the next input. For example, EarthRot takes a date in Julian
centuries as the first parameter and a flag for equation of the equinoxes as the second parameter. If you look in the
function, you will see that the default is to use the current date.

>> EarthRte
ans =
7.292115855392341e-05

You should never hesitate to look in functions to see what defaults are available and what the values are. Defaults
are always treated at the top of the function just under the header. Remember that the unix command t ype works in
MATLAB to display a function’s contents, for instance

function w = EarthRte(jD)

o°

Computes the mean earth rate.
See also MSidDay.

o o° oP

Form:

o o° oP

% Inputs

% iD (1,1) Julian date (day)

% Outputs

% \ (1,1) Mean earth rate (rad/sec)

References: The Astronomical Almanac for the Year 1993,
U.S. Government, Printing Office, 1993, p. B6.

o° oo o

o°

Copyright (c) 1993 Princeton Satellite Systems, Inc.
All rights reserved.

o° o° oP

if(nargin == 0)
jD = Date2dJD;

CubeSat Toolbox 16

CHAPTER 3. BASIC FUNCTIONS 3.2. FUNCTION FEATURES

end

w = 2xpi/ (86400xMSidDay (JD)) ;

o

SDate: 2017-05-11 14:11:01 -0400 (Thu, 11 May 2017) $
SRevision: 44563 $

o

o\

where we have excerpted the code creating the default input.

if(nargin == 0)
jD = Date2JD;
end

3.2.4 Built-in plotting

Many of the functions in the toolbox will plot the results if there are no output arguments. In many cases, you do not
need any input arguments to get useful plots due to the built in defaults, but you can also generate plots with your
own inputs. Calling for example AtmDens2 by itself will generate a plot of the atmospheric density as shown in
Figure 3.1. If no inputs are given it automatically computes the density for a range of altitudes. If you pass in a vector
such as a smaller range of altitudes, you get the same plot with your input, such as

AtmDens2 (linspace (400, 600))

Figure 3.1: Atmospheric density from AtmDens?2

Atmospheric Density " Atmospheric Density
10 T T T 10° T T T

Density (kg/mz)
Density (kglma)
>
©

T
Il

13

1 | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000 400 420 440 460 480 500 520 540 560 580 600
Altitude (km) Altitude (km)

3.2.5 Error checking

Many functions perform error checking. However, functions that are designed to be called repeatedly, for example the
right-hand-side of a set of differential equations tend not have error checking since the impact on performance would
be significant. In that case, if you pass it invalid inputs you will get a MATLAB error message.

3.2.6 Variable inputs

Some functions can take different kinds of inputs. An example is Date2JD. You can pass it either an array

[year month day hour minute seconds]

or the data structure

CubeSat Toolbox 17

3.3. EXAMPLE FUNCTIONS CHAPTER 3. BASIC FUNCTIONS

.month
.day
.year
.hour
.minute
.second

Q0 0 0 0 Q

The options are listed in the header.

3.3 Example Functions

The following sections gives examples for selected functions from the major folders included with the CubeSat tool-
box.

3.3.1 Basic Orbit

RVFromKepler uses Kepler’s equation to propagate the position and velocity vectors. The output of the demo is
shown in Figure 3.2.

>> el = [8000,0.2,0,0,0.6,0]; RVFromKepler(el)

Figure 3.2: Elliptical orbit from RVFromKepler

15 . _ Orbital Velocity
10
= 1000
€ T
§ 0 H 5
o 5
& _1000 <
: g
-5000 20
—-12000
0 —
6000 8000 5
—4000
5000 —2000
2000
X ECI (KM -10 L L . .
Y ECI (KM) (KM) o 20) T 0 100 120
>> [r,v] = E12RV(el)
r =
3200
0
0
7 =
0

13.83596536017765
2.80468902945837

3.3.2 Coord

Coord has coordinate transformation functions. Many quaternion functions are included. For example, to transform
the vector [0;0;1] from ECI to LVLH for a spacecraft in a low earth orbit type

1 >> g = QLVLH([7000;0;0],[0;7.5;0])

2 >> QForm(g, [0;0;1])

3

s g =

CubeSat Toolbox 18

CHAPTER 3. BASIC FUNCTIONS 3.3. EXAMPLE FUNCTIONS

5 0.5
6 0.5
7 0.5
8 =0.5
9 ans =
10 0
11 =1
12 0

3.3.3 Dynamics

This function can return either a state-space system or the state derivative vector. RBMode 1 has analytical expressions
for the state space system of a rigid body spacecraft.

>> [a, b, ¢, d] = RBModel (diag([2 2 11),[0;7.291e-5;01);
>> eig(a)

The resulting plant has a double integrator for each axis.

ans =

3.3.4 Environs

Models are available to compute solar flux, planetary radiation, magnetic fields and atmospheric properties. SolarF1lx
computes flux as a function of astronomical units from the sun. The function’s output is shown in Example 3.1.

Example 3.1 Solar flux from the sun

s Solar Flux
T T

SolarFlx

Flux (W/m?)
S

I I I I
0 5 10 15 20 25 30 35 40
Distance (au)

10” I I I

3.3.5 Ephem

The ephemeris directory has functions that compute the location and the orientation of the Earth and planets. This
includes determining eclipses.

For example, to locate the inertial Sun vector for a spacecraft orbiting the Earth using an almanac model,

>> [u, r] = SunV1(Jb2000, [7000;0;0])

CubeSat Toolbox 19

3.3. EXAMPLE FUNCTIONS CHAPTER 3. BASIC FUNCTIONS

0.18006
-0.90249
-0.39127

r =
1.4729e+08

which returns a unit vector to the sun from the spacecraft and the distance from the origin to the sun. The CubeSat
toolbox contains only the lower fidelity versions of these functions from the Professional Edition. This includes
SunV1, MoonV1, Planets, Eclipse, and ECIToEF, which is a computationally fast almanac version of the
transformation from ECI to the Earth-fixed frame.

3.3.6 Graphics

Plot2D is used to plot any two dimensional data. It simplifies your scripts by making most popular plotting options
available through a single function. P1ot 2D will print out a scalar answer if the inputs are scalar. See Figure 3.3.

>> angle = linspace (0, 4x*pi);
>> Plot2D (angle,sin(angle),’Angle_(rad)’,’Sine’,’Sine’)

Figure 3.3: A sine wave using P1ot2D

‘ Sine

0.8

0.6

0.4

0.2

Sine
=)

6 8
Angle (rad)

There are many other plot support functions such as AxesCart, P1ot3D and Map.

3.3.7 OrbitMechanics

The CubeSat toolbox includes functions for computing gravity from a spherical harmonic model. This is handled by
LoadGravityModel or LoadGEM and AGravity. Note that the spacecraft position must first be transformed to
the planet-fixed frame. For example, to compute the acceleration from the first four terms in the gravity model,

>> gem = LoadGEM(1);
>> r = [5489.150;802.222;3140.916];
>> accel = AGravityC(r, 4, 4, gem)

CubeSat Toolbox 20

CHAPTER 3. BASIC FUNCTIONS 3.3. EXAMPLE FUNCTIONS

3.3.8 Time

The Time directory has functions that convert between various time conventions. The most widely used function is to
convert calendar date to Julian Date. Date

>> 3D = Date2JD([2019 4 5 0 0 0])
jD =
2.458578500000000e+06
>> JD2Date (jD)
ans =
2019 0 0 0

CubeSat Toolbox 21

3.3. EXAMPLE FUNCTIONS CHAPTER 3. BASIC FUNCTIONS

CubeSat Toolbox 22

CHAPTER 4

CUBESAT

This chapter discusses how to use the CubeSat module. This module provides special system modules and mission
planning tools suitable for nanosatellite design.

The organization of the module can be seen by typing

>> help CubeSat

which returns a list of folders in the module. This includes Simulation, MissionPlanning, and Visualization, along
with corresponding Demos folders.

The CubeSat integrated simulation includes a simplified surface model for calculating disturbances. The toolbox
includes the following features:

e Integrated simulation model including

Rigid body dynamics

Reaction wheel gyrostat dynamics

Point mass

Scale height and Jacchia atmospheric models

Magnetic dipole, drag, and optical force models

Gravity gradient torques

Solar cell power model including battery charging dynamics

Three-axis attitude control using a PID

Momentum unloading calculations

Model attitude damping such as with magnetic hysteresis rods

e 2D and 3D visualization including

— Model visualization with surface normals
— 2D and 3D orbit plotting

— 3D attitude visualization

Ephemeris

— Convert ECI to Earth-fixed using almanac models

— Sun vector

23

4.1. CUBESAT MODELING

CHAPTER 4. CUBESAT

— Moon vector
e Advanced orbit dynamics

— Spherical harmonic gravity model

— Relative orbit dynamics between two close satellites

e Observation time windows

e Subsystem models

— Link bit error probabilities
— Isothermal spacecraft model

— Cold gas propulsion

4.1 CubeSat Modeling

The CubeSat model is generated by CubeSatModel, in the Utilities folder. The default demo creates a 2U satellite.
The model is essentially a set of vertices and faces defining the exterior of the satellite. The function header is below

and the resulting model is in Figure 4.1 on the facing page. This model has 152 faces.

>> help CubeSatModel
Generate vertices and faces for a CubeSat model.
If there are no outputs it will generate a plot with surface normals,
you can draw the cubesat model using patch:

or

patch(’vertices’,v,’ faces’,f,’ facecolor’,[0.5 0.5 0.5]);

type can be "3U’ or [3 2 1] i.e. a different dimension for x, y and z.

Type CubeSatModel for a demo of a 3U CubeSat.

This function will populate dRHS for use in RHSCubeSat. The surface
data for the cube faces will be 6 surfaces that are the dimensions of
the core spacecraft. Additional surfaces are added for the deployable
solar panels. Solar panels are grouped into wings that attached to the
edges of the CubeSat.

center of mass and total
The mass properties of the interior components are computed from
total mass and center of mass.

The function computes the inertia matrix,
mass.

If you set frameOnly to true (or 1), v and f will not contain the

walls. However, dRHS will contain all the wall properties.

Form

d = CubeSatModel (’"struct’)

[v, f] = CubeSatModel (type, t)

[v, f, dRHS] = CubeSatModel (type, d, frameOnly)

Demo:

CubeSatModel

Inputs

type (1,:) 'nU’ where n may be any number, or [x y z]

d (.) Data structure for the CubeSat
.thicknessWall (1,1) Wall thickness (mm)
.thicknessRail (1,1) Rail thickness (mm)
.densityWall (1,1) Density of the wall material (kg/m3)
.massComponents (1,1) Interior component mass (kg)
.cMComponents (1,1) Interior components center of mass

CubeSat Toolbox 24

CHAPTER 4. CUBESAT 4.1. CUBESAT MODELING

.sigma (3,6) [absorbed; specular; diffuse]

.cD (1,6) Drag coefficient

.solarPanel.dim (3,1) [side attached to cubesat, side perpendicular,
thickness]

.solarPanel.nPanels 1,1) Number of panels per wing
.solarPanel.rPanel 3,w) Location of inner edge of panel
.solarPanel.sPanel 3,w) Direction of wing spine

(

(

(
.solarPanel.cellNormal (3,w) Wing cell normal

(

(

(

.solarPanel.sigmaCell 3,1) [absorbed; specular; diffuse] coefficients
.solarPanel.sigmaBack 3,1) [absorbed; specular; diffuse]

.solarPanel .mass 1,1) Panel mass

t (1,1) Wall thickness (mm)
frameOnly (1,1) If true just draw the frame, optional
Outputs

v (:,3) Vertices

f (:,3) Faces

dRHS (1,1) Data structure for the function RHSCubeSat

Reference: CubeSat Design Specification (CDS) Revision 9

Figure 4.1: Model of 2U CubeSat

01

0.05

-0.15

0.2,
0.05

For the purposes of disturbance analysis, the CubeSat module uses a simplified model of areas and normals. See
CubeSatFaces. The CubeSatModel function will output a data structure with the surface model in addition to
the vertices and faces, which are strictly for visualization. This function does have the capability to model deployable
solar wings. The solar areas and normals for power generation are specified separately from the satellite surfaces, as
they may be only a portion of any given surface. See SolarCellPower for the power model.

The CubeSatRHS function documents the simulation data model. The function returns a data structure by default for
initializing simulations. The surface data from the CubeSatModel function is in the surfData and power fields.
The default data assumes no reaction wheels, as can be seen below since the kWheels field is empty. The atm data

CubeSat Toolbox 25

4.2. SIMULATION CHAPTER 4. CUBESAT

structure contains the atmosphere model data for use with AtmJ70. If this structure is empty, the simpler and faster
scale height model in AtmDens2 will be used instead.

>> d = RHSCubeSat

d

struct with fields:

jD0: 2.4552e+06
mass: 1
inertia: 0.0016667
dipole: [3?1 double]
power: [1?1 struct]
surfData: [1?1 struct]

aeroModel: (@CubeSatAero
opticalModel: @CubeSatRadiationPressure
atm: [1x1 struct]
kWheels: []
inertiaRWA: []
tRWA: []

Note in the above structure that the aerodynamics and optical force models are function handles. These functions are
designed to accept the surface model data structure within RHSCubeSat.

The key functions for modeling CubeSats are summarized in Table 4.1.

Table 4.1: CubeSat Modeling Functions

AddMass Combine component masses and calculate inertia and center-of-mass.
InertiaCubeSat | Compute the inertia for standard CubeSat types.

CubeSatFaces |Compute surface areas and normals for the faces of a CubeSat.
CubeSatModel | Generate vertices and faces for a CubeSat model.

TubeSatModel | Generate a TubeSat model.

4.2 Simulation

Example simulations are in the Demos/RelativeOrbit and Demos/Simulation folders. The first has a formation
flying demo, FFSimDemo. The second has a variety of simulations including an attitude control simulation demo,
CubeSatSimulation. CubeSatRWASimulation demonstrates a set of three orthgononal reaction wheels.
CubeSatGGStabilized shows how to set up the mass properties for a gravity-gradient boom.

Attitude control loops can be designed using the PTDMIMO function and implemented using PID3Ax1is. These are
included from the standard Spacecraft Control Toolbox.

The orbit simulations, TwoSpacecraftSimpleOrbitSimulation and TwoSpacecraftOrbitSimulation, sim-
ulate the same orbits, but the simple version uses just the central force model and the second adds a variety of distur-
bances. Both use MATLAB’s ode113 function for integration, so that integration occurs on a single line, without a

for loop. odell3 is a variable step propagator that may take very long steps for orbit sims. The integration line
looks like

% Numerically integrate the orbit
[t,x] = odell3(QFOrbitMultiSpacecraft, [0 tEnd], x, opt, d);

The default simulation length is 12 hours, and the simple sim results in 438 timesteps while the one with disturbances
computes 733 steps; Figure 4.2 on the facing page compares the time output of the two examples, where we can see
that the simple simulation had mostly a constant step size. Figure 4.3 on the next page shows the typical orbit results.

CubeSat Toolbox 26

CHAPTER 4. CUBESAT 4.2. SIMULATION

Figure 4.2: Orbit simulation timestep results, simple on the left with with disturbances on the right.

120 180
160 b
100 b
140 4
80 b 120 b
g g
e & 100f i
& 60F : : : 4 8
3]
£ e 80 b
= =
40r : : : R 60 R
a0r R
20 : : : 4
201 J b
0 0
0 50 100 150 200 250 300 350 400 450 0 100 200 300 400 500 600 700 800
Steps Steps

Figure 4.3: Orbit evolution for an initial separation of 10 meters

Two spacecraft XY—Plane
800 ‘

Q.1 hours 1.5 hours

8.5 hoyrs

400 .

Or| 0.0 hours —
7.6lhours

Ay (m)

5.4/hour:

—200} 12.0,hours 3.8 hdurs

-400 6.6 hour; §

-600+ 9.4 hour: =

-800 1 1 1 1 1 1 1
-800 -600 -400 -200 0 200 400 600 800

CubeSat Toolbox 27

4.2. SIMULATION CHAPTER 4. CUBESAT

CubeSatSimulation simulates the attitude dynamics of the CubeSat in addition to a point-mass orbit and the
power subsystem. This simulation includes forces and torques from drag, radiation pressure, and an magnetic torque,
such as from a torquer control system. Since this simulation can include control, it steps through time discretely in a
for loop. RK4 is used for integration. In this case, the integration lines look like

for k = 1:nSim

% Control system placeholder - apply constant dipole

(o}
Q.
e
e}
O
e
()
Il
=)
o
=
o
o
o0
>
=
b
o
=
al
5
»
3
>
N

end

where the control, d. dipole, would be computed before the integration at every step for a fixed timestep (1 second).
See Figure 4.4 for sample results. The simulation takes about one minute of computation time per low-Earth orbit.

Figure 4.4: CubeSat Simulation example results

. CubesSat Torques (Nm)
x10 CubesSat Orbit
aero 1

07 /\/\ /J\/V\/\ /\J\/\/\/\" agf gx 0\/\/ |

0 50 100 150 =

Tx

L L
0 50 100 150

x107
5

NAANANANANAANANA | - | ‘
VATATRVAVATAVRVATATATRVAVATATAS R GO N N

= L L
0 50 100 150 0 50 100 150

Ty
)

x10"

N AW A/\f\/\ﬂﬂ/\m,gmf ‘ ‘ 1
Y AVAVAVAVAVAVA R IR ,
o 50 100 150 001y) 00 150
Time (min) Time (min)
" CubeSat Torques (Nm)
x10 CubeSat Attitude Rate (rad/s)

aero 2
——mag

=M Ma_ MM,

0 50 100 150 -1

w (rad/s)

x107

AAAANAANAAANNNAD |
TAVATAVAVAVAVAVAVAVAVAVAVAVAVA

-0.02 . L
0 50 100 150 o 50 100 150

Ty
o
w (rad/s)
o

v

7
X 10 i x10°

<N n/\‘/\/\/\/\/\,

= g
VAY ZAVAVAVAVATAYAI VN/VWWA/W\/
o %0 100 150 o 50 10 150
Time (min) Time (min)

The key functions used in simulations are summarized in Table 4.2 on the next page. The space environment calcula-
tions from CubeSatEnvironment are then passed to the force models in CubeSatAero and CubeSatRadiationPressure.

CubeSat Toolbox 28

CHAPTER 4. CUBESAT 4.3. MISSION PLANNING

Table 4.2: CubeSat Simulation Functions

RHSCubeSat Dynamics model including power and optional reaction wheels
CubeSatEnvironment Environment calculations for the CubeSat dynamical model.
CubeSatAero Aerodynamic model for a CubeSat.

CubeSatRadiationPressure | Radiation pressure model for a CubeSat around the Earth.
CubeSatAttitude Attitude model with either ECI or LVLH reference
SolarCellPower Compute the power generated for a CubeSat.

RHSCubeSat also models battery charging if the batteryCapacity field of the power structure has been appro-
priately set. Power beyond the calculated consumption will be used to charge the battery until the capacity is reached.
The battery charge is always be the last element of the spacecraft state (after the states of any optional reaction wheels).

4.3 Mission Planning

The MissionPlanning folder provides several tools for planning a CubeSat mission. These include generating attitude
profiles and determining observation windows.

ObservationTimeWindows has abuilt-in demo which also demonstrates ObservationTimeWindowsPlot,
as shown in Figure 4.5. There are two ground targets, one in South America and one in France (large green dots).

Figure 4.5: Observation time windows

Latitude (deg)

-150 -100 -50 0 50 100 150
East Longitude (deg)

The satellite is placed in a low Earth orbit, given a field of view of 180 degrees, and the windows are generated over a
7 hour horizon. The figure shows the field of view in magenta and the satellite trajectory segments when the target is
in the field of view are highlighted in yellow. This function can operate on a single Keplerian element set or a stored
trajectory profile.

RapidSwath also has a built-in demo. The demos uses an altitude of 2000 km and a field of view half-angle of 31
degrees. The function allows you to specify a pitch angle between the sensor boresight axis and the nadir axis, in this
case 15 degrees. When called with no outputs, the function generates a 3D plot. In Figure 4.6 on the next page we
have used the camera controls to zoom in on the sensor cone. The nadir axis is drawn in green and the boresight axis
in yellow.

The AttitudeProfileDemo shows how to assemble several profile segments together and get the resulting ob-
servation windows. The segments can be any of a number of modes, such as latitude/longitude pointing, nadir or sun

CubeSat Toolbox 29

4.4. VISUALIZATION CHAPTER 4. CUBESAT

Figure 4.6: RapidSwath built-in demo results

pointing, etc.

4.4 Visualization

The CubeSat Toolbox provides some useful tools to visualize orbits, field of view, lines of sight, and spacecraft
orientations.

Use PlotOrbit to view a spacecraft trajectory in 3D with an Earth map. The GroundTrack function plots the
trajectory in 2D and has the option of marking ground station locations.

Figure 4.7: Orbit visualization with P1lotOrbit and GroundTrack

Latitude (deg)

: y -150 -100 -50 0 50 100 150
Spacecraft Control Toolbox —~ e East Longitude (deg)

The spacecraft model from CubeSatModel can be viewed with surface normals using DrawCubeSat. The vertex
and face information is not retained with the dynamical data, so DrawCubeSatSolarAreas can be used to verify
the solar cell areas directly from the RHS data structure.

A representative model of the spacecraft may also be viewed in its orbit, along with a sensor cone and lines of sight to

CubeSat Toolbox 30

CHAPTER 4. CUBESAT 4.4. VISUALIZATION

Figure 4.8: CubeSat model with deployable solar panels viewed with DrawCubeSat
CubeSat with Surface Normals

all of the visible GPS satellites. Use DrawSpacecraftInOrbit .m to generate this view. An example is shown in
Figure 4.9. The image on the left shows the spacecraft orbit, its sensor cone projected on the Earth, the surrounding
GPS satellites, and lines of sight to the visible GPS satellites. The image on the right is a zoomed-in view, where the
spacecraft CAD model may be clearly seen.

Figure 4.9: Spacecraft visualization with sight lines using DrawSpacecraftInOrbit

Figure 1: Orbit Displa
anNnon Figure 1: Orbit Display E . play

File Edit View Insert Tools Desktop Window Help File Edit View Insert Tools Desktop VWindow Help
» DEHde h R UDEH- S 08 aO » Dgde bk RA0DEA- 2 0EH =D
KT ALLES CEE 9 AD L@ Sk eaadEE e § D L@

Run the OrbitAndSensorConeAnimation.m mission planning demo to see how to generate simulated orbits,
compute sensor cone geometry, and package the data for playback using PackageOrbitDataForPlayback and
PlaybackOrbitSim. The playback function loads two orbits into the Animat ionGUI, which provides VCR like

CubeSat Toolbox 31

4.5. SUBSYSTEMS MODELING CHAPTER 4. CUBESAT

controls for playing the simulation forward and backward at different speeds. Set the background color to black and
point the camera at a spacecraft, then use the camera controls to move in/out, zoom in/out, and rotate the camera
around the spacecraft within a local coordinate frame. The screenshot in Figure 4.10 shows the 3D animation window,
the AnimationGUI playback controls, and the camera controls. Press the Record button (with the red circle) to save
the frames to the workspace so that they may be exported to an AVI movie.

Figure 4.10: Playback demo using PlaybackOrbitSim

Figure 5

Camera Background View

Camera

e
Zoom; ED

Azimuth: 4 [y

Elevation: o | ».

(o NN Animation GUI

Time: 6460.00 57.9%

[O o o] o] [o) o] o] ™, S oo

%

4.5 Subsystems Modeling

The CubeSat Toolbox contains select models for key subsystems. The relevant functions and demos are:

e BatterySizing - compute power storage requirements given a spacecraft power model and an orbit
e LinkOrbitAnalysis - Compute bit error probability along an orbit

e IsothermalCubeSatDemo - modeling the CubeSat as a block at a single temperature, calculate the fluctu-
ations over an orbit including the effect of eclipses.

CubeSatPropulsion - Returns the force, torque and mass flow for a cold gas system.

e DesignMagneticTorquer - Design an air coil magnetic torquer for a CubeSat.

CubeSat Toolbox 32

CHAPTER 5

COORDINATE TRANSFORMATIONS

This chapter shows you how to use Spacecraft Control Toolbox functions for coordinate transformations. There
is a very extensive set of functions in the Common/Coord folder covering quaternions, Euler angles, transformation
matrices, right ascension/declination, spherical coordinates, geodetic coordinates, and more. A few are discussed here.
For more information on coordinate frames and representations, please see the Coordinate Systems and Kinematics
chapters in the accompanying book Spacecraft Attitude and Orbit Control.

5.1 Transformation Matrices

Transforming a vector u from its representation in frame A to its representation in frame B is easily done with a
transformation matrix. Consider two frames with an angle 6 between their = and y axes.

Figure 5.1: Frames A and B

Frame B

Frame A

1 uA = [1;0;01;

2 theta = pi/6;

s m = [cos(theta),sin(theta),0;...
4 —-sin(theta), cos (theta),0; 0
5 0,0,11;

uB = mxuA

o

Using SCT functions, this code can be written as a function of Euler angles using a rotation about the z axis:
uB = Eul2Mat ([0, 0,thetal) *xud;

Use Mat2Eul to switch back to an Euler angle representation.

33

5.2. QUATERNIONS CHAPTER 5. COORDINATES

5.2 Quaternions

A quaternion is a four parameter set that embodies the concept that any set of rotations can be represented by a single
axis of rotation and an angle. PSS uses the shuttle convention so that our unit quaternion (obtained with QZero) is [1
00 0]. In Figure 5.1 on the preceding page the axis of rotationis [0 0 1] (the z axis) and the angle is theta. Of
course, the axis of rotation could alsobe [0 0 -1] and the angle ~theta.

Quaternion transformations are implemented by the functions QForm and QTForm. QForm rotates a vector in the
direction of the quaternion, and QTForm rotates it in the opposite direction. In this case

g = Mat2Q(m);
uB = QForm(q, ud)
uA = QTForm (g, uB)

We could also get g by typing
g = Eul2Q([0;0;thetal)

Much as you can concatenate coordinate transformation matrices, you can also multiply quaternions. If gAToB
transforms from A to B and gBToC transforms from B to C then

gAToC = QMult (gAToB, gBToC) ;

The transpose of a quaternion is just

gCToA = QPose (gAToC) ;

You can extract Euler angles by

eAToC = Q2Eul (gAToC) ;

or matrices by

mAToC = Q2Mat (gAToC) ;

If we convert the three Euler angles to a quaternion
gIToB = Eul2Q(e);

gIToB will transform vectors represented in [to vectors represented in B. This quaternion will be the transpose of
the quaternion that rotates frame B from its initial orientation to its final orientation or

gIToB = QPose (gBInitialToBFinal);

Given a vector of small angles eSmal1l that rotate from vectors from frame A to B, the transformation from A to B
is

uB = (eye(3)-SkewSymm(eSmall)) ~uh;

where

SkewSymm ([1;2;3])

ans =
[0 -3 2;
3 0 -1;
-2 1 0]

Note that SkewSymm (x) *y is the same as Cross (x,y).

CubeSat Toolbox 34

CHAPTER 5. COORDINATES 5.3. COORDINATE FRAMES

5.3 Coordinate Frames

The toolbox has functions for many common coordinate frames and representations, including

e Earth-fixed frame, aerographic (Mars), selenographic (Moon)
e Latitude (geocentric and geodetic), longitude, and altitude

e Earth-centered inertial

e [ocal vertical, local horizontal

e Nadir and sun-nadir pointing

e Hills frame

e Rotating libration point

e Right ascension and declination

e Azimuth and elevation

e Spherical, cartesian, and cylindrical

Most of these functions can be found in Coord and some are in Ephem due to their dependence on ephemeris data
such as the sun vector. A few relevant functions are in OrbitMechanics. For example, the QLVLH function in Coord
computes a quaternion from the inertial to local-vertical local-horizontal frame from the position and velocity vectors.
QNadirPoint, also in Coord, aligns a particular body vector with the nadir vector. The QSunNadi r function in
Ephem computes the sun-nadir quaternion from the ECI spacecraft state and sun vector.

The relationship between the Selenographic and the ECI frame is computed by MoonRot and shown in Figure 5.2.
¢! is the Selenographic Latitude which is the acute angle measured normal to the Moon’s equator between the

Figure 5.2: Selenographic to ECI frame

Celestial Sphere

Moon’s Equator

Xm

y X
Vernal Equinox

equator and a line connecting the geometrical center of the coordinate system with a point on the surface of the Moon.
The angle range is between 0 and 360 degrees. A, is the Selenographic Longitude which is the angle measured
towards the West in the Moon’s equatorial plane, from the lunar prime meridian to the object’s meridian. The angle
range is between -90 and +90 degrees. North is the section above the lunar equator containing Mare Serenitatis. West
is measured towards Mare Crisium.

The areocentric frame computed by MarsRot is shown in Figure 5.3 on the following page. €, w, and i, are the
standard Euler rotations of the Mars vernal equinox, T, with respect to the Earth’s vernal equinox, Y.

CubeSat Toolbox 35

5.3. COORDINATE FRAMES CHAPTER 5. COORDINATES

Figure 5.3: Areocentric frame

Za

Qa

Ya

wa

CubeSat Toolbox 36

CHAPTER 6

COORDINATE FRAMES

This chapter introduces the different coordinate frames functions available in the Formation Flying module. This
subset are included in the CubeSat toolbox to support a formation flying simulation function. Only circular reference
orbits are supported. Further detail on the derivations is available in the companion textbook.

6.1 Overview

The coordinate systems used in this module can first be divided into 2 major groups: absolute and relative. Absolute
coordinates describe the motion of a satellite with respect to its central body, i.e the Earth. Relative coordinates
describe the motion of a satellite with respect to a point (i.e. another satellite) on the reference orbit.

A summary of the different types of coordinate systems is provided below:

e Absolute Coordinate Systems

— Earth Centered Inertial (ECI)
— Orbital Elements

* Standard [a, i, Q,w, e, M]
* Alfriend [a, 0,1, q1, g2,]

* Mean and Osculating
e Relative Coordinate Systems

— Differential Elements
— Cartesian Frames

* Hill’s Frame
* LVLH Frame

* Frenet Frame

— Geometric Parameters

An important note on terminology: when discussing formation flying, the satellites with relative motion are termed
relatives, and the satellite that they move with respect to is termed the reference.

37

6.2. ORBITAL ELEMENT SETS CHAPTER 6. COORDINATE FRAMES

6.2 Orbital Element Sets

The Formation Flying module makes use of two different orbital element sets. The classical Kepler elements are
defined as:
[a,i,Q,w,e, M]

where a is the semi-major axis, ¢ is the inclination, €2 is the right ascension (longitude) of the ascending node, w is
the argument of perigee, e is the eccentricity, and M is the mean anomaly. This is the standard set of elements used
throughout the Spacecraft Control Toolbox.

A second set of elements is particularly useful for formation flying applications. This set is termed the Alfriend
element set, after Dr. Terry Alfriend of Texas A&M who first suggested its use. The Alfriend elements are used solely
with circular or near-circular orbits. The Alfriend set is:

[a707i7q1a q2, Q}

where a, i, () are defined as before. The remaining elements, ¢1, g2, 8, are defined in order to avoid the problem that
arises at zero eccentricity, where the classical argument of perigee and mean anomaly are undefined.

The functions Alfriend2El and E12A1friend can be used to convert between the two element sets.

Either of the two above element sets can be defined as mean or osculating. When orbits are governed by a point-mass
model for the central body’s gravity field, the elements do not osculate. Higher fidelity models have perturbations that
cause the elements to change over time, or osculate. The function Osc2Mean will convert osculating elements to
mean elements. The elements must be defined in the Alfriend system. Similarly, the function ECI2MeanElements
will compute the mean elements directly from an ECI state.

6.3 Relative Coordinate Systems

The three different types of coordinate systems for expressing the relative orbital states of spacecraft are described in
the textbook: orbital element differences, cartesian coordinate systems, and geometric parameter sets . The Formation
Flying module provides coordinate transformation utilities to switch back and forth between all three systems.

6.3.1 Orbital Element Differences

A differential orbital element vector is simply the difference between the orbital element vectors of two satellites. Just
as with regular, absolute orbits, this is a convenient way to parameterize the motion of a relative orbit. In the absence
of disturbances and gravitational perturbations, 5 of the 6 differential orbital elements remain fixed; only the mean (or
true) anomaly changes.

The function OrbElemDiff can be used to robustly subtract two element vectors. This function ensures that angle
differences around the wrapping points of +7 and (0, 27) are computed properly.

6.3.2 Cartesian Coordinate Systems
The three different coordinate systems for relative orbital motion supported by the Formation Flying module are:
e Hills

e LVLH

e Frenet

CubeSat Toolbox 38

CHAPTER 6. COORDINATE FRAMES 6.3. RELATIVE COORDINATE SYSTEMS

Each frame is attached to the reference satellite, and rotates once per orbit. Two axes are contained in the orbital plane,
and the third axis points normal to the plane. A diagram of each frame is shown in Figure 6.1. For simplicity, the
frames are shown with a circular reference orbit.

Figure 6.1: Relative Orbit Coordinate Frames

(a) Hills Frame (b) LVLH Frame (c) Frenet Frame

To compute a Hills-frame state from two inertial states, use the function: ECI2Hills.
To transform between the Hills and LVLH frames, use the functions: Hi11s2LVLH and LVLH2Hi1l1ls.

To transform from the Hills frame to the Frenet frame, use the function: Hil1ls2Frenet.

6.3.3 Geometric Parameter Sets

The previous coordinate systems provide an exact way to express the relative orbit state. The Formation Flying module
also enables you to express desired relative states using geometric parameters. In formation flying, we are generally
interested in defining relative orbit trajectories that repeat once each period. This is referred to as “T-Periodic Motion”,
and is discussed in the textbook. When the trajectory repeats itself periodically, it forms a specific geometric shape
in 3 dimensional space. Our sets of geometric parameters can be used to uniquely describe the shape of T-periodic
trajectories in circular and eccentric orbits.

For T-periodic motion in circular orbits, remember that in-plane motion takes on the shape of a 2x1 ellipse, with the
longer side oriented in the along-track direction and the shorter side along the radial direction. As we know from
Hill’s equations, the cross-track motion is just a harmonic oscillator, decoupled from the in-plane motion, with a
natural frequency equal to the orbit rate.

Circular geometries are defined with the following parameters, shown in Table 6.1 on the following page:

Use the function Geometry_Structure to create a data structure of circular geometry parameters:

>> g = Geometry_Structure
g =
struct with fields:

CubeSat Toolbox 39

6.3. RELATIVE COORDINATE SYSTEMS CHAPTER 6. COORDINATE FRAMES

Table 6.1: Geometric Parameters for Circular Orbits

Parameter Description
yO0 yo |Along-track offset of the center of the in-plane motion
ak ar |Semi-major axis of relative 2x1 in-plane ellipse
beta B Phase angle on ellipse (measured positive clockwise from nadir axis to velocity vector) when
the satellite is at the ascending node
zInc 2 Cross-track amplitude due to inclination (Inc) difference
zLan zqa |Cross-track amplitude due to longitude of ascending node (Lan) difference
y0: O
akE: 0
beta: 0
zInc: O
zLan: O

A diagram illustrating these parameters is shown in Figure 6.2.

Figure 6.2: Geometric Parameters for Circular Orbits

‘; YH >
)
|
|

|| Yo ag

Y

Separating the cross-track geometry into the contributions from inclination and right ascension differences provides
useful insight into the stability of the trajectory. As we know, the J2 perturbation (Earth oblateness) causes secular
drift in several orbital elements. If the secular drift is the same for both orbits, then there is no relative secular drift
introduced by J2. It turns out that J2 has two significant impacts on relative motion: 1) it can cause secular drift in the
along-track direction, and 2) it can create a frequency difference between the in-plane and out-of-plane motion. For
the stability of formations, we seek to minimize the amount of along-track drift. It can be shown that the along-track
drift due to right ascension differences is much smaller than that due to inclination differences. This is the motivation
for defining the cross-track geometry parameters according to inclination and right ascension differences.

CubeSat Toolbox 40

	CubeSat Toolbox
	Contents
	List of Figures
	Introduction
	Organization
	Requirements
	Installation
	Getting Started

	Getting Help
	MATLAB's Built-in Help System
	Command Line Help
	FileHelp
	Searching in File Help
	DemoPSS
	Graphical User Interface Help
	Technical Support

	Basic Functions
	Introduction
	Function Features
	Example Functions

	CubeSat
	CubeSat Modeling
	Simulation
	Mission Planning
	Visualization
	Subsystems Modeling

	Coordinates
	Transformation Matrices
	Quaternions
	Coordinate Frames

	Coordinate Frames
	Overview
	Orbital Element Sets
	Relative Coordinate Systems

