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CHAPTER 1

INTRODUCTION

This chapter shows you how to install the Spacecraft Control Toolbox and how it is organized.

1.1 Organization

The Spacecraft Control Toolbox is composed of MATLAB m-files and mat-files, organized into a set of modules by
subject. It is essentially a library of functions for analyzing spacecraft and missions. There is a substantial set of
software which the Spacecraft Control Toolbox shares with the Aircraft Control Toolbox, and this software is in a
module called Common. The core spacecraft files are in SC and SCPro along with special plotting tools in Plotting.
The new CubeSat module demonstrates mission planning and simulation for nanosatellites. These five modules are
referred to together as the Core toolbox. Functions for estimation, orbit analysis, subsystem analysis, and detailed
attitude control system examples are grouped in separate modules. All of the modules are described in the following
table, including the add-on modules which are purchased separately.

Table 1.1: Spacecraft Control Toolbox Modules
Module Function
AerospaceUtils CAD tools, coordinate transformations, atmosphere models
Common Control design , math, quaternions, general estimation and Kalman filters, time

conversions, graphics, utilities
CubeSat CubeSat and nanonsatellite modeling
Lunar Cube Small satellite lunar missions.
Plotting PlottingTool and AnimationGUI for visualization of complex simula-

tions
SC Attitude dynamics, pointing budgets, basic orbit dynamics, environment, sample

CAD models, ephemeris, sensor and actuator modeling.
SCPro Additional high-fidelity models for environment, sensors, actuators.
Imaging Image processing functions
Link Basic RF and optical link analysis.
Missions In-depth attitude control system design and mission examples, including the hy-

pothetical geosynchronous satellite ComStar
Orbit Orbit mechanics, maneuver planning, fuel budgets, and high-fidelity simulation.
Orbit Maneuver Orbit maneuver optimization.
Power Basic power modeling
Propulsion Electric and chemical propulsion. Launch vehicle analysis.
SpacecraftEstimation Attitude and orbit estimation, stellar attitude determination.
Thermal Basic thermal modeling
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Formation Flying Add-On Formation flying control
Fusion Add-On Fusion propulsion analysis
Launch Vehicle Add-On Launch vehicle design
LunarCube Add-On Lunar extension for the CubeSat toolbox
SAAD Add-On Spin axis attitude determination
Solar Sail Add-On Solar sail control and mission analysis

The Spacecraft Control Toolbox core, CubeSat, SpacecraftEstimation, Imaging, Orbit, Link, Propulsion, and Thermal
modules are described in this user’s guide. Each of these modules has its own part in the guide and is included in the
Professional Edition of the toolbox. The Academic Edition consists of only the AerospaceUtils, Common, CubeSat,
Plotting, and SC directories grouped together at the top. The CubeSat Toolbox consists of the CubeSat module and
those files from the core toolbox needed to run them.

The Formation Flying, Solar Sail, and SAAD add-on modules have their own user’s guides. These modules can be
purchased separately.

1.2 Requirements

MATLAB 2014a at a minimum is required to run all of the functions. Most of the functions will run on previous
versions but we are no longer supporting them.

1.3 Installation

The preferred method of delivering the toolbox is a download from the Princeton Satellite Systems website. Put the
folder extracted from the archive anywhere on your computer. There is no “installer” application to do the copying for
you. We will refer to the folder containing your modules as PSSToolboxes. If you later purchase an add-on module,
you would simply add it to this folder.

All you need to do now is to set the MATLAB path to include the folders in PSSToolboxes. We recommend using
the supplied function PSSSetPaths.m instead of MATLAB’s path utility. From the MATLAB prompt, cd to your
PSSToolboxes folder and then run PSSSetPaths. For example:

>> cd /Users/me/PSSToolboxes
>> PSSSetPaths

This will set all of the paths for the duration of the session, with the option of saving the new path for future sessions.

1.4 Getting Started

The first two functions that you should try are DemoPSS and FileHelp. Each toolbox or module has a Demos
folder and a function DemoPSS. Do not move or remove this function from any of your modules! DemoPSS.m looks
for other DemoPSS functions to determine where the demos are in the folders so it can display them in the DemoPSS
GUI.

The FileHelp function provides a graphical interface to the MATLAB function headers. You can peruse the functions
by folder to get a quick sense of your new product’s capabilities and search the function names and headers for
keywords. FileHelp and DemoPSS provide the best way to get an overview of the Spacecraft Control Toolbox.
Both are described in more detail in the next chapter.
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Another useful utility function you should try is Finder. This GUI allows you to search your entire path, or selected
folders, for instances of any keyword. While FileHelp allows you to search headers for keywords, Finder allows
you to search for instances of a function or variable in the code itself. This GUI is described in Section 4.5.1. For
example, you can use it to find all the demos that show the use of the function SunV1, which computes the sun vector
from the date using an almanac.

** New in SCT ver 9.0 - Demos and Functions can now be browsed by MATLAB’s built-in help system. These are
described in Section 2.1. This allows for the same searching and browsing capabilities as DemoPSS and FileHelp.
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CHAPTER 2

GETTING HELP

This chapter shows you how to use the help systems built into PSS Toolboxes. There are several sources of help.
Our toolboxes are now integrated into MATLAB’s built-in help browser. Then, there is the MATLAB command line
help which prints help comments for individual files and lists the contents of folders. Then, there are special help
utilities built into the PSS toolboxes: one is the file help function, the second is the demo functions and the third
is the graphical user interface help system. Additionally, you can submit technical support questions directly to our
engineers via email.

2.1 MATLAB’s Built-in Help System

2.1.1 Basic Information and Function Help

Our toolbox information can now be found in the MATLAB help system. To access this capability, simply open the
MATLAB help system. As long as the toolbox is in the MATLAB path, it will appear in the contents pane. In more
recent versions of MATLAB, you need to navigate to Supplemental Software from the main window, as shown in
Figure 2.1 on the following page. The index page of the SCT documentation is shown in Figure 2.2 on page 9.

The help window from R2011b and earlier is depicted in Figure 2.3 on page 9.

This contains a lot information on the toolbox. It also allows you to search for functions as you would if you were
searching for functions in the MATLAB root.

2.1.2 Published Demos

Another feature that has been added to the MATLAB help structure is the access to all of the toolbox demos. Every
single demo is now listed, according to module and the folder. These can be found under the Other Demos or Examples
portion of the Contents Pane. Each demo has its own webpage that goes through it step by step showing exactly what
the script is doing and which functions it is calling. From each individual demo webpage you can also run the script
to view the output, or open it in the editor. Note that you might want to save any changes to the demo under a new file
name so that you can always have the original. Below is an example of demo page displayed in MATLAB help that
shows where to find the toolbox demos as well as the the hierarchal structure used for browsing the demos.
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Figure 2.1: MATLAB Help - Supplemental Software
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Figure 2.2: Toolbox Documentation Main Page, R2016b

Figure 2.3: Toolbox Documentation, R2011b
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Figure 2.4: Toolbox Demos
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2.2 Command Line Help

You can get help for any function by typing

>> help functionName

For example, if you type

>> help C2DZOH

you will see the following displayed in your MATLAB command window:

Create a discrete time system using a zero order hold.

Create a discrete time system from a continuous system
assuming a zero-order-hold at the input.

Given
.
x = ax + bu

Find f and g where

x(k+1) = fx(k) + gu(k)

--------------------------------------------------------------------------
Form:
[f, g] = C2DZOH( a, b, T )

--------------------------------------------------------------------------

------
Inputs
------
a (n,n) Continuous plant matrix
b (n,m) Input matrix
T (1,1) Time step

-------
Outputs
-------
f (n,n) Discrete plant matrix
g (n,m) Discrete input matrix

--------------------------------------------------------------------------
References: Van Loan, C.F., Computing Integrals Involving the Matrix

Exponential, IEEE Transactions on Automatic Control
Vol. AC-23, No. 3, June 1978, pp. 395-404.

--------------------------------------------------------------------------

All PSS functions have the standard header format shown above. Keep in mind that you can find out which folder a
function resides in using the MATLAB command which, i.e.

>> which C2DZOH
Core/Common/Control/C2DZOH.m

When you want more information about a folder of interest, you can get a list of the contents in any directory by using
the help command with a folder name. The returned list of files is organized alphabetically. For example,

>> help Atmosphere
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Common/Atmosphere

S
SimpAtm - Simplified atmosphere model.
StdAtm - Computes atmospheric density based on the standard atmosphere model.

If there is a folder with the same name in a Demos directory, the demos will be listed separately. For example,

>> help Plugins

Common/Plugins

T
Telemetry - Generates a set of telemetry pages.
TelemetryOffline - This plots telemetry files previously saved

by Telemetry.
TelemetryPlot - Plot real time in a single window.
TimePlugIn - Create a time GUI plug in.

Common/Demos/Plugins

T
TelemetryDemo - Demonstrate the Telemetry function.

In the case of a demo, the command line help will provide a link to the published HTML for that demo, if any exists.
Any functions referenced on a See also line will have dynamic links, which will show the help for that function.

>> help Attitude3D
Simple sim using a CAD model of the spacecraft to view the attitude.
Demonstrates control design using PIDMIMO, the Disturbances function,
rigid body attitude dynamics with FRB, orbit dynamics with FOrbCart, and
integration using RK4. The CAD model is viewed using DrawSCPlugIn.

Use the flags to turn on or off the disturbances and 3D viewing. If 3D
viewing is off the demo concludes with a quaternion animation.
------------------------------------------------------------------------
See also DrawSCPlanPlugIn, PIDMIMO, AU2Q, AnimQ, QLVLH, QMult, QPose,
Constant, NPlot, Plot2D, Plot3D, TimeGUI, RK4, JD2000, El2RV,
Disturbances, SunV1, DrawSCPlugIn, Accel
------------------------------------------------------------------------
Published output in the Help browser
showdemo Attitude3D

To see the entire contents of a file at the command line, use type.

>> type Attitude3D

%% Simple sim using a CAD model of the spacecraft to view the attitude.
% Demonstrates control design using PIDMIMO, the Disturbances function,
...

Command line help also works with higher level directories, for instance if you ask for help on the Common directory,
you will get a list of all the subdirectories.

>> help Common
>> help Common

PSS Toolbox Folder Common
Version 2019.1 23-Dec-2019
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Directories:
Atmosphere
Classes
CommonData
ComponentModels
Control
ControlGUI
Database
DemoFuns
Demos
Demos/Control
Demos/ControlGUI
Demos/Database
Demos/General
Demos/GeneralEstimation
Demos/Graphics
Demos/Help
Demos/MassProperties
Demos/Plugins
Demos/UKF
Estimation
FileUtils
GUIs
General
Graphics
Interface
MassProperties
Materials
Plugins
Quaternion
Time
Transform

The function ver lists the current version of all your installed toolboxes. Each Core module that you have installed
will be listed separately. For instance,

>> ver
-----------------------------------------------------------------------------------------------------

MATLAB Version: 9.6.0.1072779 (R2019a)
MATLAB License Number: 346509
Operating System: Mac OS X Version: 10.15.2 Build: 19C57
Java Version: Java 1.8.0_181-b13 with Oracle Corporation Java HotSpot(TM) 64-Bit

Server VM mixed mode
-----------------------------------------------------------------------------------------------------

MATLAB Version 9.6 (R2019a
)

Deep Learning Toolbox Version 12.1 (R2019a
)

Image Acquisition Toolbox Version 6.0 (R2019a
)

Image Processing Toolbox Version 10.4 (R2019a
)

Instrument Control Toolbox Version 4.0 (R2019a
)

Optimization Toolbox Version 8.3 (R2019a
)

PSS Toolbox Folder AerospaceUtils Version 2019.1
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PSS Toolbox Folder Common Version 2019.1
PSS Toolbox Folder CubeSat Version 2019.1
PSS Toolbox Folder Electrical Version 2019.1
PSS Toolbox Folder Imaging Version 2019.1
PSS Toolbox Folder Link Version 2019.1
PSS Toolbox Folder LunarCube Version 2019.1
PSS Toolbox Folder Math Version 2019.1
PSS Toolbox Folder Missions Version 2019.1
PSS Toolbox Folder Orbit Version 2019.1
PSS Toolbox Folder Plotting Version 2019.1
PSS Toolbox Folder Propulsion Version 2019.1
PSS Toolbox Folder SC Version 2019.1
PSS Toolbox Folder SCPro Version 2019.1
PSS Toolbox Folder SpacecraftEstimation Version 2019.1
PSS Toolbox Folder Thermal Version 2019.1

2.3 FileHelp

2.3.1 Introduction

When you type

FileHelp

the FileHelp GUI appears, Figure 2.5 on the next page.

There are five main panes in the window. On the left hand side is a display of all functions in the toolbox arranged
in the same hierarchy as the PSSToolboxes folder. Scripts, including most of the demos, are not included. Below
the hierarchical list is a list in alphabetical order by module. On the right-hand-side is the header display pane.
Immediately below the header display is the editable example pane. To its left is a template for the function. You can
cut and paste the template into your own functions.

The buttons along the bottom provide additional controls along with the search feature. Select the “Search String”
text and replace it with your own text, for example “sun”. Then click either the Search File Names button or Search
Headers.

2.3.2 The List Pane

If you click a file in the alphabetical or hierarchical lists, the header will appear in the header pane. This is the same
header that is in the file. The headers are extracted from a .mat file so changes you make will not be reflected in the
file. In the hierarchical list, any name with a + or - sign is a folder. Click on the folders until you reach the file you
would like. When you click a file, the header and template will appear.
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Figure 2.5: The file help GUI
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2.3.3 Edit Button

This opens the MATLAB edit window for the function selected in the list.

2.3.4 The Example Pane

This pane gives an example for the function displayed. Not all functions have examples. The edit display has scroll
bars. You can edit the example, create new examples and save them using the buttons below the display. To run an
example, push the Run Example button. You can include comments in the example by using the percent symbol.

2.3.5 Run Example Button

Run the example in the display. Some of the examples are just the name of the function. These are functions with
built-in demos. Results will appear either in separate figure windows or in the MATLAB Command Window.

2.3.6 Save Example Button

Save the example in the edit window. Pushing this button only saves it in the temporary memory used by the GUI.
You can save the example permanently when you Quit.

2.3.7 Help Button

Opens the on-line help system.

2.3.8 Quit

Quit the GUI. If you have edited an example, it will ask you whether you want to save the example before you quit.

2.4 Searching in File Help

2.4.1 Search File Names Button

Type in a function name in the edit box and push the button called Search File Names.

2.4.2 Find All Button

Find All returns to the original list of the functions. This is used after one of the search options has been used.

2.4.3 Search Headers Button

Search headers for a string. This function looks for exact, but not case sensitive, matches. The file display displays all
matches. A progress bar gives you an indication of time remaining in the search.
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2.4.4 Search String Edit Box

This is the search string. Spaces will be matched so if you type “attitude control” it will not match “attitude control”
(with two spaces.)

2.5 DemoPSS

If you type DemoPSS you will see the GUI in Figure 2.6. This predates MATLAB’s built-in help feature and provides
an easy way to run the scripts provided in the toolbox. The list on the left-hand-side is hierarchical and the top level
follows the organization of your toolbox modules. Most folders in your modules have matching folders in Demos with
scripts that demonstrate the functions. The GUI checks to see which directories are in the same directory as DemoPSS
and lists all directories and files. This allows you to add your own directories and demo files.

Click on the first name to open the directory. The + sign changes to - and the list changes. Figure 2.6 shows the
Common/Control folder in the core toolbox. The hierarchical menu shows the highest level folders.

Figure 2.6: The demo GUI

Your own demos will appear if they are put in any of the Demos folders. If you would like to look at, or edit, the script,
push Show the Script.

You can also access the published version of the demos using MATLAB’s help system. On recent versions this is
access by selecting Supplemental Software from the main Help window, and then selecting Examples.
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2.6 Graphical User Interface Help

Each graphical user interface (GUI) has a help button. If you hit the help button a new GUI will appear. You can
access on-line help about any of the GUIs through this display. It is separate from the file help GUI described above.
The same help is also available in HTML through the MATLAB help window.

The HelpSystem display is hierarchical. Any list item with a + or - in front is a help heading with multiple subtopics.
+ means the heading item is closed, - means it is open. Clicking on a heading name toggles it open or closed. Figure 2.7
shows the display with the Telemetry help expanded. If you click on a topic in the list you will get a text display in the
right-hand pane. You can either search the headings or the text by entering a text string into the Search For edit box

Figure 2.7: On-line Help

and hitting the appropriate button. Restore List restores the list window to its previous configuration.

2.7 Finder

The Finder GUI, shown below, is another handy function for searching for information in the toolbox. (It is not
included in the CubeSat Toolbox.) You can search for instances of keywords in the entire body of functions and
demos, not just the help comments. You can use this function with any toolboxes, not just your PSS toolboxes, since
this actively searches the files every time instead of using a parsed version of the headers the way FileHelp does.
Consequently, it is a little slower to use, but you can use it with your own function libraries too.

The Finder function has options for searching the entire path or a selected directory. The subfolders of a higher-level
directory can be included or not. The Pick button brings up a file selection dialog where you can navigate to your
desired directory. The search can be case sensitive and you can select whole word matching. You can search on just
file help comments, or include or exclude them. For example, you can find all functions and demos that actually use
the function PIDMIMO by searching with comments excluded. Once your search results are displayed in the Results
window, you can open any file by clicking the Edit button.
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2.8 Technical Support

Contact support@psatellite.com for free email technical support. We are happy to add functions and demos for our
customers when asked.
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CHAPTER 3

WORKFLOW

This chapter shows you how the Spacecraft Control Toolbox fits into a spacecraft design workflow.

3.1 Overall Workflow

Figure 3.1 shows the workflow using PSS products. Preliminary work including disturbance budgets, pointing bud-
gets, control system design and simulation are done using the Spacecraft Control Toolbox entirely in the MATLAB
environment. MATLAB code is converted to C/C++ code using MatrixLib.

Figure 3.1: Workflow. Work progresses from MATLAB to flight.
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ControlDeck
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Figure 3.2 on the following page shows a simulation of the NASA Messenger spacecraft near Mercury. This was used
as part of a NASA Phase II SBIR to develop and optical navigation system. The single axis testbed used for a U.S.
Army satellite contract is also shown in the figure. It includes a simulation of an “Earth-Fixed” spacecraft. This allows
checking out of the control system including star camera, sun sensor, magnetometer, GPS and RWA. Stellarium is
used to generate star fields. The Army satellite is a 30 cm cube.

3.2 Working in the Spacecraft Control Toolbox

Figure 3.3 on the next page shows the workflow within MATLAB. The entire spacecraft can be designed. Figure 3.4
on the following page shows a typical CAD model done in MATLAB. The layout can be done in SCT. The CAD
functions will compute the total mass and inertia. Surface models can be produced for use by disturbances.

Figure 3.5 on page 23 shows a complete GN&C system. Table 3.1 on page 23 gives the SCT functions used to
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Figure 3.2: All software simulations and testbed. The testbed interacts with a simulation on the MacBook Pro.

Figure 3.3: MATLAB SCT workflow. SCT provides all of the software needed to analyze and design spacecraft.
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Figure 3.4: Typical CAD model.
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implement the system. Note that you don’t have to build a complete system in MATLAB. You can work with selected
blocks by making a simulation script that just addresses those functions. There are multiple functions that can be used
in nearly every block of the diagram. The control system uses state space matrices to implement the PID controller.

Figure 3.5: ACS system with autonomous navigation.
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Other control design options include SISO, Eigenstructure assignment, phase plane and quadratic regulators.

Table 3.1: SCT ACS for a 3 axis control system . The row colors correspond the block colors in Figure 3.5. Items
with “None” have simple interfaces that do not require a function.

Block MATLAB function
MassProperties MassBudget .m
Ephemeris SolarSysJPL.m
Star Catalog LoadCatalog.m
Momentum Control MagControlTwoAxis.m
Attitude Control PID3Axis.m
Attitude Determination StellarAttDetUKF.m
Fine Centroiding CentroidCOM.m
Coarse Centroiding CoarseCentroids.m
Star ID StarIDPyramid.m
Orbit Determination OpticalNavPlanetStar.m
Torque Distribution (Pseudo Inverse) pinv.m
Torque Distribution (Simplex) simplex2.m
Torquer Interface None
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RWA Interface None
RCS Interface ThrusterCommand.m
Magnetometer Processing None
MEMS IMU Processing None
Solar Panel Processing None
Sun Sensor Processing SunSensor.m
Camera Processing None
GPS Processing GPSReceiver.m
Comm Processing ToneRanging.m
ESA Processing MeasEarthChord.m
Torquers MagneticTorquer.m
Reaction Wheels RWA.m
Thrusters BloDown.m
Magnetometer MeasMagnetometerEarth.m
IMU RIGModel.m
Solar Panels SolarPanelThermal.m
Sun Sensors MeasSunSensorDigital.m
Camera PinholeCamera.m
GPS MeasGPS.m
Comm PowerReceived.m
Earth Sensor ESA.m

3.3 Porting Spacecraft Control Toolbox MATLAB to C++

3.3.1 Introduction

Flight software development can be done using the Princeton Satellite Systems ControlDeck C++ class library for
implementing the control system, MatrixLib for porting MATLAB code and VisualCommander for simulating the
spacecraft. The three products are discussed in the following sections.

3.3.2 VisualCommander

VisualCommander is an extensible client-server application for data visualization, command, and control. Designed
to seamlessly integrate multiple distinct operations (including missions, experiments, simulations, and others), Vi-
sualCommander provides reliable data storage, access control, command processing, and an extensive suite of built
in visualization and analysis tools. VisualCommander was initially developed under Air Force SBIR funding. An
example display from a satellite operator training application is shown in Figure 3.6 on the facing page.

VisualCommander receives data from and sends commands to external entities via a lightweight plugin interface. This
approach enables virtually any system to be connected to VisualCommander with minimal programming effort. Exam-
ples of such systems include simulations, hardware experiments, space operations (telemetry), medical instruments,
web sources, and more. Furthermore, VisualCommander can manage multiple active connections involving distinct,
unrelated systems. For example, data from a hardware testbed could be simultaneously integrated with data from both
a software simulation and an operational unmanned air vehicle (UAV). The data and command capabilities of each
active plugin are combined within a unified “Data Hierarchy”. VisualCommander clients can, in turn, access this data
hierarchy as a collective whole or by individual system.

The VisualCommander client application enables users to construct custom graphical user interfaces (GUIs) using a
library of built in displays ranging from simple numeric to plots to three dimensional OpenGL visualization tools.
Interfaces consist of one or more windows containing multiple, layered display “pages”. Displays are added to these
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Figure 3.6: TrainingSat attitude display

pages and then linked with data and/or commands from the data hierarchy, all via standard drag and drop actions.
Extensive configuration functionality allows users to easily create a custom “look and feel” for each interface. Multiple
screen configurations are easily leveraged via multiple display windows.

In addition to visualization and command, clients have powerful tools for dynamic data analysis known as “Data
Processors”. Data processors generate new data in the data hierarchy by operating on existing data points. Visual-
Commander includes a built-in data processor capable of interpreting a significant number of instructions. This can be
used to perform extensive real-time calculations on data acquired from external systems.

VisualCommander is designed, first and foremost, to be an extensible package. As stated above, lightweight plugins
are used to connect external sources of data to the system. In addition, the client can be extended by creating new
data display tools and data processors. Both of these component types are loaded by the client as plugins, and the
application programming interfaces (APIs) for developing them have been designed to simplify use by customers
and third-party vendors. In particular, existing OpenGL visualization tools can be encapsulated in VisualCommander
display plugins with minimal effort.

External simulations can be connected to VisualCommander via the previously described plugin interface. In addition,
VisualCommander includes a built-in simulation engine, DSim, which is capable of high-fidelity dynamics simula-
tions. In DSim, simulations are constructed by connecting pre-defined models of various components, such as sensors,
actuators, batteries, power networks, etc. New simulations can be created simply by modifying the configuration of
existing simulations using included graphical tools for manipulation. In addition, completely new models can be added
to the existing library programmatically, through an API for describing model properties and behaviors.

An example involving a spacecraft field-of-view is shown in Figure 3.7 on the next page. This shows the Space Rapid
Transit launch vehicle under turbofan power and a telemetry page for the attached Upper Stage.

The orbiting satellite picture was created with VisualCommander graphics tools. VC provides a library of utilities
that simplify the display of complex 3D objects. This display shows orbit position, attitude and thruster firings from a
spacecraft simulation.
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Figure 3.7: Space Rapid Transit vehicle simulation

3.3.3 ControlDeck

ControlDeck is an object-oriented asynchronous control system framework. ControlDeck modules communicate
through a robust messaging architecture. This provides tremendous flexibility when implementing complex multi-
rate control systems. Modules can run off timers, based on events, or using background threads.

ControlDeck is organized into a three-level structure, shown in Figure 3.8 on the facing page. At the top is the
ControlDeck framework itself. Below that are organizational groupings known as Systems, followed by the software
modules. ControlDeck can easily interface with hardware and with the DSim simulation framework. DSim variables
can be linked directly to ControlDeck variables. When hardware is in the loop, individual ControlDeck modules will
handle interactions with that hardware. It’s easy to use ControlDeck with hardware in the loop. It has been used with
Phidgets USB components including motors, temperature sensors and PH sensors, and with Saitek flight simulator
controllers, Labjack I/O Boards and other hardware.

Because the source of individual variables is unimportant to other modules wishing to make use of the variables, it is
easy to gradually move from simulated to real hardware: as hardware is added into the loop, the variables representing
that hardware in the simulation are removed from mapping, and instead a ControlDeck module interfacing with that
hardware is written that creates variables with the same group and path. Other modules can interact with either
simulated or ‘real’ variables without any changes.

ControlDeck has been run on a Beagleboard for a CubeSat control application.. The board connected to a simulation
running on a MacBook using TCP/IP. It also runs on MacOS X, Linux and Windows.

3.3.4 MatrixLib

Introduction

MatrixLib is a C++ implementation of matrix operations. Ideal for science and engineering applications, MatrixLib
provides an easy to use C++ matrix class with an extensive body of functions and operations. MatrixLib links against
LAPACK (Linear Algebra package) and BLAS (Basic Linear Algebra Subprograms) for many of its internal calcula-
tions providing efficiency.
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Figure 3.8: ControlDeck. The structure provides a flexible and robust software architecture for multi-processor con-
trol applications. It can run on a Beagleboard, right.
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Features

• Cross Platform: Supported on Windows NT/XP/2000, MacOS, Linux and Unix.

• Networking Support: Built in serialization functions exist for transferring matrix data between different archi-
tectures (big-endian, little endian) over a network interface.

• BLAS/LAPACK Interface: An interface to these libraries allow users to access standard. highly efficient routines
in these libraries.

• Display and Inspection: Powerful display functions exist to view the matrix and control the precision of display.

• Built in Debugging: MatrixLib protects against invalid operations by checking matrix dimensions, element
values, data pointers, etc. Each matrix has an internal error field which is flagged when invalid operations are
attempted. In addition, it provides warning messages and stack tracing tools for locating the precise point at
which an invalid operation originated.

• Ease of code conversion from Matlab to C++: Has hundreds of C++ functions for doing matrix operations with
function calls similar to Matlab.

• Free Demo: A demo version is available for free download complete with API and sample code.

Function categories

The functions contained in MatrixLib can be grouped under the following categories:

• Construction and I/O: Packaging to string and binary formats as well as a display to standard output.

• Matrix Manipulation: Easy extraction and incorporation of sub-matrices, stack and append operations, dynamic
resizing etc.

• Inspection and Assignment: Functions for comparing matrices, locating elements in a matrix, sorting the ele-
ments, applying functions on an element-by-element basis etc.

• Arithmetic: Standard arithmetic operations such as addition and multiplication, both matrix-matrix and matrix-
scalar.

• Algebraic operations and Trigonometry: Standard algebraic and trigonometric operations on each element of
the matrix.
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• Linear Algebra: Functions include transposes, inverses, singular value decompositions, simplex methods, linear
solvers and more.

3.3.5 MATLAB and C++ Example

MatrixLib can speed porting from MATLAB to C++. ControlDeck modules typically use C++ classes defined in
MatrixLib and in the SCControl C++ libraries.

This is a MATLAB function from SCT:

function r = LatLonAltToEF( x, f, a )
eSq = f*(2-f);
sPhi = sin( x(1,:) );
d = sqrt( 1 - eSq*sPhi.ˆ2 );
xC = (a./d + x(3,:)).*cos(x(1,:));
zC = ((1-eSq)*a./d + x(3,:)).*sPhi;
c = cos( x(2,:) );
s = sin( x(2,:) );
r = [xC.*c;xC.*s;zC];

This is the C++ version from the PSS SCControl library. It returns an ml matrix object.

ml_matrix lat_lon_alt_to_pos(double lat, double lon, double h, double f, double a
)

{
double eSq = f*(2.0 - f);
double c = cos(lat);
double s = sin(lat);
double xC, zC;
double q = a/sqrt(1 - eSq*s*s);
xC = (q+h)*c;
zC = (q*(1 - eSq) + h)*s;
ml_matrix pos(3,1);
pos(1,1) = xC*cos(lon);
pos(2,1) = xC*sin(lon);
pos(3,1) = zC;
return pos;

}
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BASIC FUNCTIONS

This chapter shows you how to use a sampling of the most basic Spacecraft Control Toolbox functions.

4.1 Introduction

The Spacecraft Control Toolbox is composed of several thousand MATLAB files. The functions cover attitude control
and dynamics, computer aided design, orbit dynamics and kinematics, ephemeris, actuator and sensor modeling, and
thermal and mathematics operations. Most of the functions can be used individually although some are rarely called
except by other toolbox functions.

This chapter will review some basic features built into the SCT functions and highlight some examples from the folders
that you will use most frequently. The last section introduces the GUIs included in the toolbox. You can always build
additional GUIs using the plug-ins described in Appendix C on page 245.

4.2 Header Format

Our functions follow a fixed header format. To view the header of a function in the command line, type, “help
functionname”. For example,

>> help Dot
Dot product with support for arrays.
The number of columns of w and y can be:
- Both > 1 and equal
- One can have one column and the other any number of columns

Since version 1.
--------------------------------------------------------------------------

Form:
d = Dot ( w, y )

--------------------------------------------------------------------------

------
Inputs
------
w (:,:) Vector
y (:,:) Vector
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-------
Outputs
-------
d (1,:) Dot product of w and y

--------------------------------------------------------------------------

You can see that the header starts with a description of the function. This gives the first version of the toolbox that
included the function in the “Since” line. Then, there is the function syntax under the heading “Form”. If there are
multiple syntaxes accepted by the function, they will all be listed here. Finally, there is a list of the inputs and outputs
with descriptions. If there are specific units required they will be given here. MATLAB variables do not have explicit
types, so we have developed a specific format for showing the size or type of inputs and outputs, as shown in Table 4.1.

Table 4.1: Format Markup

(n,m) Matrix with row and column dimensions. If these are not a
fixed number, : will be used.

(.) Data structure. The fields will be described on the following
lines.

(:) Data structure array.
{n,m} A cell array. The dimensions are given the same as for ma-

trices.
(1,:) A row vector or string.
(1,1) A scalar or boolean.
(*) A function handle.

Optional inputs are generally at the end of the input list. An optional input may have a default value available, which
will be described in the header. An optional input may be marked with an asterisk.

Function headers should list any “side effects” of the function, such as generating plots or saving files. The header
will specify if the function has a built-in demo, which is described further in the next section. Additional content may
include references

Here is another example with a demo, inputs with default values, and a reference.

>> help El2RV
Converts orbital elements to r and v for an elliptic orbit.
Type El2RV for a demo.

--------------------------------------------------------------------------
Form:
[r, v] = El2RV( el, tol, mu )

--------------------------------------------------------------------------

------
Inputs
------
el (:,6) Elements vector [a,i,W,w,e,M] (angles in radians)
tol (1,1)* Tolerance for Kepler’s equation solver. (default = 1e-14)
mu (1,1)* Gravitational constant. (default = 3.98600436e5)

-------
Outputs
-------
r (3,:) position vector
v (3,:) velocity vector

--------------------------------------------------------------------------
References: Battin, R.H., An Introduction to the Mathematics and
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Methods of Astrodynamics, p 128.
--------------------------------------------------------------------------

4.3 Function Features

4.3.1 Introduction

Functions have several features that are helpful to understand. Features that are available in the functions are listed in
Table 4.2.

Table 4.2: Features in Spacecraft Control Toolbox functions

Features
Built-in demos
Default parameters
Built-in plotting
Error checking
Variable inputs

These are illustrated in the examples given below.

4.3.2 Built-in demos

Many functions have built in demos. A function with a built-in demo requires no inputs and produces a plot or other
output for a range of input parameters to give you a feel for the function.

An example of a function with a built-in demo is AtmDens2 which generates the plot in Figure 4.1. This plot shows
the atmospheric density as a function of altitude over the full range of the model. The inputs for the built-in demo are

Figure 4.1: Atmospheric density from AtmDens2
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generally specified near the top of the function so it is easy to check for one by looking at the code. Plots are produced
at the bottom of a function.
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4.3.3 Default parameters

Most functions have default parameters. There are two ways to get default parameters. If you pass an empty matrix,
i.e.

[]

as a parameter the function will use a default parameter if defaults are available. This is only necessary if you wish to
use a default for one parameter and input the value for the next input. For example, EarthRot takes a date in Julian
centuries as the first parameter and a flag for equation of the equinoxes as the second parameter. If you look in the
function, you will see that the default is to use the current date.

>> g = EarthRot( [], 1 )

g =
-0.9815 -0.1914 0
0.1914 -0.9815 0

0 0 1.0000

The second way to get defaults is simply to leave off arguments at the end of the input list. For EarthRot the second
parameter is also optional.

>> g = EarthRot( )

g =
-0.9815 -0.1916 0
0.1916 -0.9815 0

0 0 1.0000

You should never hesitate to look in functions to see what defaults are available and what the values are. Defaults
are always treated at the top of the function just under the header. Remember that the unix command type works in
MATLAB to display a function’s contents, for instance

function [g, gMST, gAST] = EarthRot( T, ˜ )

%% Computes the Earth greenwich matrix that transforms from ECI to EF.
% Any input of eOfECalc will cause it to include the equation of the
% equinoxes.
%
% Type EarthRot for a demo.
%
%--------------------------------------------------------------------------
% Form:
% [g, gMST, gAST] = EarthRot( T, eOfECalc )
%--------------------------------------------------------------------------
%
% ------
% Inputs
% ------
% T (1,1) Julian centuries of 86400s dynamical time from j2000.0
% eOfECalc (1,1) Calculate the equation of the equinoxes
%
% -------
% Outputs
% -------
% g (3,3) Greenwich matrix
% gMST (1,1) Greenwich mean sidereal time (deg)
% gAST (1,1) Greenwich apparent sidereal time (deg)
%
%--------------------------------------------------------------------------
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% See also: GMSTime, EOfE, JD2T
%--------------------------------------------------------------------------
% References: Seidelmann, P. K., The Explanatory Supplement to the
% Astronomical Almanac, University Science Books, 1992, p. 20.
%--------------------------------------------------------------------------

%--------------------------------------------------------------------------
% Copyright (c) 1993, 2015 Princeton Satellite Systems, Inc.
% All rights reserved.
%--------------------------------------------------------------------------
% Since 1.1
%--------------------------------------------------------------------------

if( nargin < 1 )
T = [];

end

if( isempty( T ) )
T = JD2T(Date2JD);

end

% Find Greenwich Mean Sidereal Time
gMST = GMSTime(36525*T + 2451545);

% Add the equation of the equinoxes to get apparent sidereal time
if( nargin == 2 )

gAST = gMST + EOfE( T );
else

gAST = gMST;
end

gAST = (pi/180)*gAST; % Convert to radians

sGAST = sin( gAST );
cGAST = cos( gAST );

g = [cGAST, sGAST, 0; -sGAST, cGAST, 0; 0, 0, 1];

%--------------------------------------
% $Date: 2017-05-05 14:28:24 -0400 (Fri, 05 May 2017) $
% $Revision: 44494 $
>>

where we have excerpted the code creating the default input.

4.3.4 Built-in plotting

Many of the functions in the toolbox will plot the results if there are no output arguments. In many cases, you do not
need any input arguments to get useful plots due to the built in defaults, but you can also generate plots with your own
inputs. Calling for example EarthRad by itself will generate a plot of the absorbed flux per unit area as shown in
Example 4.1 on the next page. If no inputs are given it automatically computes the earth albedo for a range of altitudes.
If you want the same altitudes (first input) but different absorptivity and flux (second and third inputs), you can pass
empty for the first argument,

>> EarthRad( [], 0.3, 320 )

and a plot using those values will be generated.
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Example 4.1 Earth radiation
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4.3.5 Error checking

Many functions perform error checking. However, functions that are designed to be called repeatedly, for example the
right-hand-side of a set of differential equations tend not have error checking since the impact on performance would
be significant. In that case, if you pass it invalid inputs you will get a MATLAB error message.

4.3.6 Variable inputs

Some functions can take different kinds of inputs. An example is Date2JD. You can pass it either an array

[ year month day hour minute seconds ]

or the data structure

d.month
d.day
d.year
d.hour
d.minute
d.second

The options are listed in the header.

4.4 Example Functions

The following sections gives examples for selected functions from the major folders of the SCT core toolbox.

4.4.1 Attitude

Consider stability for a dual spin spacecraft in geosynchronous orbit. Many commercial satellite are dual-spin stabi-
lized since such a design is very robust.

>> dSS = DSpnStab( 1, 100, 1000, 1000, 0, 7.291e-5 )
>> DSpnStab( 1, 100, 1000, 1000 )
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Figure 4.2: Dual Spin Stability
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The result is dSS = 0 which means the system is unstable! A stability plot is shown in Figure 4.2. One means stable.
DSpnStab is a typical function in SCT. If no outputs are specified it generates a plot.

Next, compare magnetic torquers with thrusters at geosynchronous altitude. The specific impulse is 120 sec. and
the moment arm is 0.8 m. The plot in Example 4.2 shows the trade-off between thrusters and magnetic torquers for
geosynchronous orbit where the magnetic field is 75 nano-Tesla. The specific impulse assumes very short pulses.

Example 4.2 Torquer and thruster comparison results

MagTComp( 120, 0.8, 75e-9 )

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10

Torque (microNm)

M
as

s 
(k

g
)

4.4.2 Basic Orbit

RVFromKepler uses Kepler’s equation to propagate the position and velocity vectors. The output of the demo is
shown in Figure 4.3 on the following page.

>> el = [8000,0.2,0,0,0.6,0]; RVFromKepler( el )

>> [r,v] = El2RV( el )
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Figure 4.3: Elliptical orbit from RVFromKepler
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4.4.3 Coord

Coord has coordinate transformation functions. Many quaternion functions are included. For example, to transform
the vector [0;0;1] from ECI to LVLH for a spacecraft in a low earth orbit type

1 >> q = QLVLH( [7000;0;0],[0;7.5;0])
2 >> QForm( q, [0;0;1] )
3

4 q =
5 0.5
6 0.5
7 0.5
8 -0.5
9 ans =

10 0
11 -1
12 0

4.4.4 CAD

Many CAD functions are available to draw spacecraft components. Type AntennaPatch to get an antenna repre-
sented as part of an ellipsoid, as in Example 4.3 on the next page.

A Hall thruster can be drawn with HallThrusterModel as shown in Example 4.4 on the facing page.

4.4.5 Control

To convert a state space matrix from continuous time to discrete time use C2DZOH as shown below. In this case the
example is for a double integrator with a time step of 0.5 seconds.

>> C2DZOH([0 1;0 0], [0;1], 0.5 )
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Example 4.3 Antenna patch

AntennaPatch

Example 4.4 Hall thruster

HallThrusterModel
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ans =
1 0.5
0 1

4.4.6 Dynamics

This function can return either a state-space system or the state derivative vector. MBModel has analytical expressions
for the state space system of a momentum bias spacecraft.

>> [a, b, c, d] = MBModel( diag([ 10000 2000 10000]),[0;400;0],[0;7.291e-5;0]);
>> eig(a)

The resulting plant has a double integrator for pitch. Roll/yaw has two pairs of complex eigenvalues, one at orbit rate
(due to pointing at the earth) and one at the nutation frequency. Both modes are undamped.

ans =
0 + 0.00007291000000i
0 - 0.00007291000000i
0 + 0.03994167200000i
0 - 0.03994167200000i
0
0

4.4.7 Environs

Models are available to compute solar flux, planetary radiation, magnetic fields and atmospheric properties. SolarFlx
computes flux as a function of astronomical units from the sun. The function’s output is shown in Example 4.5.

Example 4.5 Solar flux from the sun
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4.4.8 Ephem

The ephemeris directory has functions that compute the location and the orientation of the Earth and planets.

For example, to locate the inertial Sun vector for a spacecraft orbiting the Earth using an almanac model,

>> [u, r] = SunV1( JD2000, [7000;0;0] )
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u =
0.18006

-0.90249
-0.39127

r =
1.4729e+08

which returns a unit vector to the sun from the spacecraft and the distance from the origin to the sun. SunV2 provides
the same inputs and outputs and uses a higher precision sun model.

4.4.9 Graphics

Plot2D is used to plot any two dimensional data. It simplifies your scripts by making most popular plotting options
available through a single function. Plot2D will print out a scalar answer if the inputs are scalar. See Figure 4.4.

>> angle = linspace(0,4*pi);
>> Plot2D(angle,sin(angle),’Angle (rad)’,’Sine’,’Sine’)

Figure 4.4: A sine wave using Plot2D

There are many other plot support functions such as AddAxes, Plot3D and PlotOrbitPage.

4.4.10 Hardware

A pivot is a rotation actuator used to tile spacecraft components. Most pivot mechanisms consist of a hinge and a lead
screw driven by a stepping motor via a gear. Pivot mechanisms are nonlinear for large angles. If you type

>> PivotMch

you get a plot of a pivot mechanism angle versus pivot steps (Figure 4.5 on the next page).

4.4.11 Time

The Time directory has functions that convert between various time conventions. The most widely used function is to
convert calendar date to Julian Date.
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Figure 4.5: Pivot mechanism
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>> jD = Date2JD
JD2Date(jD)
jD =

2.458844133015539e+06
ans =

1.0e+03 *
2.019000000000000 0.012000000000000 0.026000000000000 0.015000000000000

0.011000000000000 0.032542612552643
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4.5 GUI Tools in the Toolbox

4.5.1 Finder GUI

The Finder GUI, shown in Figure 4.6, is a handy function for searching for information in the toolbox. You can
search for instances of keywords in the entire body of functions and demos, not just the help comments. You can use
this function with any toolboxes, not just your PSS toolboxes, since this actively searches the files every time instead
of using a parsed version of the headers the way FileHelp does. Consequently, it is a little slower to use, but you
can use it with your own function libraries, too.

The Finder function has options for searching the entire path or a selected directory. The subfolders of a higher-level
directory can be included or not. The Pick button brings up a file selection dialog where you can navigate to your
desired directory. The search can be case sensitive and you can select whole word matching. You can search on just
file help comments, or include or exclude them. For example, you can find all functions and demos that actually use
the function PIDMIMO by searching with comments excluded. Once your search results are displayed in the Results
list, you can open any file by clicking the Edit button.

Figure 4.6: Finder window
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CHAPTER 5

SPACECRAFT CONTROL TUTORIAL

This tutorial is implemented in the MATLAB function SCTTutorial.

Step 1 - Dynamics: We start with the general kinematics and dynamics.

q̇ = f(q, ω) (5.1)
T = Iω̇ + ω×Iω (5.2)

where q is the spacecraft’s attitude quaternion, ω is the body rates, I is the inertia, and T is the torque applied. We
need to linearize these equations in the LVLH (local-vertical-local-horizontal) frame. The inertial (ECI) and LVLH
frames are shown in Figure 5.1.

Figure 5.1: ECI and LVLH Coordinate Frames
ZECI
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ZLVLH

YLVLH

XLVLH
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Assuming that the spacecraft is earth-pointing, the LVLH body rate in the y axis is constant and equal to the space-
craft’s orbit rate, ω0.

θ̇ =

 ωx + ω0θz
ω0

ωz − ω0θx

 (5.3)

We see that the x and z equations are coupled. However, if we look at the magnitude of the coupling terms, we see
that they are quite small, so we drop those terms. The resulting linearized dynamics equation is

T = Iω̇ (5.4)
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This is a simple double integrator (1/s2).

Step 2 - Control: We will use PSS’ PIDMIMO control design function, which performs automatic pole placement for
a double integrator system. It produces a state-space 3 axis PID controller of the form

xk+1 = Axk +Buk (5.5)
yk = Cxk +Duk (5.6)

by designing in the frequency domain and converting to discrete time using a zero-order hold. The continuous time
equivalent for each axis is

y = Kpu+
Krs

s+ ωR
u+Ki

u

s
(5.7)

The function takes the following inputs:

Table 5.1: PIDMIMO input parameters

Inputs Size Description Notes

inr (n,n) Inertia matrix
zeta (n,1) Vector of damping ratios A large zeta will cause the system to be sluggish. General practice is

to set zeta for critical damping.
omega (n,1) Vector of undamped natural frequencies The bandwidth cant be more than 1/2 the sampling time, and generally

is much less. For a 4 Hz sampling rate, we use an omega of 0.1 rad/sec.
tauInt (n,1) Vector of integrator time constants This is the time to cancel a steady disturbance. We need this term

because delta-V thrusters are always misaligned, so there is a constant
disturbance when we are using them. However, is tauInt is too fast,
then the system is hard to stabilize with delays.

omegaR (n,1) Vector of derivative term roll-off fre-
quencies

This is the derivative filter. It should be 5 times faster than the band-
width of the system.Using a derivative filter reduces the need for a
low-pass filter.

tSamp 1 Sampling period Generally 0.25 sec for a spacecraft control system, but should be at
least 5-10 times faster than the fastest frequency of the controller.

sType : State equation type (’Delta’ or ’Z’) Delta (x = x + Ax + Bu) is better from a numeric point of view.

The function returns the a, b, c, and d matrices of the state-space control system plus a structure of the forward, rate,
and integral gains. The last two inputs are optional and result in a discrete control system; without them the function
returns the continuous state-space system. See C2DZOH for more information on the discretization.

The function call with sample output is

>> [a, b, c, d, k] = PIDMIMO( 1, 0.7071, 0.1, 100, 1, 0.25, d e l t a )
a =

0 0
0 -0.259968823501459

b =
0.25

0.25996882350146
c =

0.000521750104942956 -0.207366539452617
d =

0.223137533733209
k =

kR: 10.918482508346
kF: 0.0157709942805926
kI: 0.0330828922806096

Step 3 - Simulation: Now, we can simulate our controller with a real spacecraft model. The inertia matrix is

Spacecraft Control Toolbox 44



CHAPTER 5. SCT TUTORIAL

inertia = diag([24.5 10 25])
inertia =

24.5 0 0
0 10 0
0 0 25

which is representative of a spacecraft with long solar arrays in the y axis and a nearly symmetric cubic bus. Well use
rigid body dynamics and a 4th order Runge-Kutta integrator. The dynamics update step looks like

x = RK4( ’FRB’, x, tSamp, t(k), inertia, invInertia, tExt+tDist );

where RK4 and FRB are both SCT functions. FRB implements a rigid-body right-hand-side for a state including the
attitude quaternion and the body rates. The controller implementation in delta form looks like

accel(1) = c*xRoll + d*angleError(1);
xRoll = xRoll + a*xRoll + b*angleError(1);

accel(2) = c*xPitch + d*angleError(2);
xPitch = xPitch + a*xPitch + b*angleError(2);

accel(3) = c*xYaw + d*angleError(3);
xYaw = xYaw + a*xYaw + b*angleError(3);

tExt = -inertia*accel;

where each axis is computed separately and the x vector for each axis contains 2 states, for angle and rate. Since we
simulate the quaternion which transforms from the ECI frame to the body frame, we calculate the angle error from the
calculated body-to-LVLH quaternion.

qECIToLVLH = QLVLH( rECI,vECI );
qBodyToLVLH = QPose( QMult( QPose(qECIToBody),qECIToLVLH ) );
angleError = -2*qBodyToLVLH(2:4);

To test the controller, we give each axis an initial disturbance torque on the order of 1x10−6 Nm. The disturbance
torque tDist is nonzero only for the first step. The resulting control torques are shown in Figure 5.2.

Figure 5.2: Control torques
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Next, we simulate the controller again, this time with a delay equal to one sampling time. We see in Figure 5.3 on the
next page that our controller does fine with this delay.
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Figure 5.3: Control torque, ideal and with a 0.25 sec delay

Ideal vs. delayed controller: torque
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Notes on real designs: In a real stationkeeping system, one must account for a number of effects that are not modeled
in this simple example, such as:

• minimum pulsewidth of the control actuators (thrusters)

• noise filters

• unmodelled dynamics (disturbances like drag, etc.)

• delays in the system

The minimum pulsewidth for thrusters is often 20 ms, so any control torque we applied in the simulation resulting in
a smaller pulsewidth is actually not physically possible. Accounting for this finite resolution results in limit cycling
about the desired control point.

Noise filters are generally needed in a real control system. They can help account for both noise and unmodelled
dynamics. Typical types are notch and roll-off, see for example Notch.

Delays may come from sensors, other hardware, or software. Once identified, they can be accounted for in the
controller gains. For example, PSS once had to upload new gains to a geosynchronous spacecraft when a 2 second
delay was discovered in the earth sensor after launch!
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COORDINATE TRANSFORMATIONS

This chapter shows you how to use Spacecraft Control Toolbox functions for coordinate transformations. There
is a very extensive set of functions in the Common/Coord folder covering quaternions, Euler angles, transformation
matrices, right ascension/declination, spherical coordinates, geodetic coordinates, and more. A few are discussed here.
For more information on coordinate frames and representations, please see the Coordinate Systems and Kinematics
chapters in the accompanying book Spacecraft Attitude and Orbit Control.

6.1 Transformation Matrices

Transforming a vector u from its representation in frame A to its representation in frame B is easily done with a
transformation matrix. Consider two frames with an angle θ between their x and y axes.

Figure 6.1: Frames A and B
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1 uA = [1;0;0];
2 theta = pi/6;
3 m = [ cos(theta),sin(theta),0;...
4 -sin(theta),cos(theta),0;...
5 0,0,1];
6 uB = m*uA

Using SCT functions, this code can be written as a function of Euler angles using a rotation about the z axis:

uB = Eul2Mat([0,0,theta])*uA;

Use Mat2Eul to switch back to an Euler angle representation.
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6.2 Quaternions

A quaternion is a four parameter set that embodies the concept that any set of rotations can be represented by a single
axis of rotation and an angle. PSS uses the shuttle convention so that our unit quaternion (obtained with QZero) is [1
0 0 0]. In Figure 6.1 on the preceding page the axis of rotation is [0 0 1] (the z axis) and the angle is theta. Of
course, the axis of rotation could also be [0 0 -1] and the angle -theta.

Quaternion transformations are implemented by the functions QForm and QTForm. QForm rotates a vector in the
direction of the quaternion, and QTForm rotates it in the opposite direction. In this case

q = Mat2Q(m);
uB = QForm(q,uA)
uA = QTForm(q,uB)

We could also get q by typing

q = Eul2Q([0;0;theta])

Much as you can concatenate coordinate transformation matrices, you can also multiply quaternions. If qAToB
transforms from A to B and qBToC transforms from B to C then

qAToC = QMult(qAToB,qBToC);

The transpose of a quaternion is just

qCToA = QPose(qAToC);

You can extract Euler angles by

eAToC = Q2Eul(qAToC);

or matrices by

mAToC = Q2Mat(qAToC);

If we convert the three Euler angles to a quaternion

qIToB = Eul2Q(e);

qIToB will transform vectors represented in I to vectors represented in B. This quaternion will be the transpose of
the quaternion that rotates frame B from its initial orientation to its final orientation or

qIToB = QPose(qBInitialToBFinal);

Given a vector of small angles eSmall that rotate from vectors from frame A to B, the transformation from A to B
is

uB = (eye(3)-SkewSymm(eSmall))*uA;

where

SkewSymm([1;2;3])
ans =
[0 -3 2;
3 0 -1;

-2 1 0]

Note that SkewSymm(x)*y is the same as Cross(x,y).
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6.3 Coordinate Frames

The toolbox has functions for many common coordinate frames and representations, including

• Earth-fixed frame, aerographic (Mars), selenographic (Moon)

• Latitude (geocentric and geodetic), longitude, and altitude

• Earth-centered inertial

• Local vertical, local horizontal

• Nadir and sun-nadir pointing

• Hills frame

• Rotating libration point

• Right ascension and declination

• Azimuth and elevation

• Spherical, cartesian, and cylindrical

Most of these functions can be found in Coord and some are in Ephem due to their dependence on ephemeris data
such as the sun vector. A few relevant functions are in OrbitMechanics. For example, the QLVLH function in Coord
computes a quaternion from the inertial to local-vertical local-horizontal frame from the position and velocity vectors.
QNadirPoint, also in Coord, aligns a particular body vector with the nadir vector. The QSunNadir function in
Ephem computes the sun-nadir quaternion from the ECI spacecraft state and sun vector.

The relationship between the Selenographic and the ECI frame is computed by MoonRot and shown in Figure 6.2.
φ′m is the Selenographic Latitude which is the acute angle measured normal to the Moon’s equator between the

Figure 6.2: Selenographic to ECI frame

equator and a line connecting the geometrical center of the coordinate system with a point on the surface of the Moon.
The angle range is between 0 and 360 degrees. λm is the Selenographic Longitude which is the angle measured
towards the West in the Moon’s equatorial plane, from the lunar prime meridian to the object’s meridian. The angle
range is between -90 and +90 degrees. North is the section above the lunar equator containing Mare Serenitatis. West
is measured towards Mare Crisium.

The areocentric frame computed by MarsRot is shown in Figure 6.3 on the following page. Ωa, ωa and ia are the
standard Euler rotations of the Mars vernal equinox, Υa with respect to the Earth’s vernal equinox, Υ.
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Figure 6.3: Areocentric frame
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CHAPTER 7

USING CAD FUNCTIONS

7.1 Introduction

This chapter shows you how to use the CAD functions. These functions allow you to work with 3-dimensional
representations of your spacecraft. You can assemble spacecraft from components and use the resulting models for
multi-body simulations, disturbance analysis and visualization.

The toolbox provides several CAD functions to simplify your design and simulation tasks. You can create a spacecraft
model with BuildCADModel, or import it (.dxf, .obj and .3DMF files) using the LoadCAD function. You can
interactively draw the spacecraft using DrawSCPlanPlugIn and visualize its attitude and orbit motion by passing
the kinematic and position vectors to DrawSCPlugIn.

There are many demos showing you how to create both simple and complex models. Most of the model demos begin
with Build. There are also demos showing how to use the models for visualization inside simulations and disturbance
analysis.

7.2 Building a Spacecraft Model Using BuildCADModel

7.2.1 Introduction

BuildCADModel is script based and is only used to view the results of your model building. All model building is
done in a script. This way it is easy to write loops to add components, etc. The process for building a CAD model is

1. Define spacecraft properties

2. Create bodies

3. Create components and assign them to bodies

4. View with BuildCADModel

5. Export, if desired, or save the resulting data structure

All functions are done with BuildCADModel. Bodies, rigid assemblies such as a rotating solar array on a strut, are
created with the function CreateBody and components are created with the function CreateComponent. If you
call BuildCADModel with no inputs, a list of all possible actions for the function will be printed.

>> BuildCADModel
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User Actions
’initialize’
’add units’
’add name’
’set aerodynamic model’
’set aerodynamic model file’
’add reci’
’add veci’
’add qecitobody’
’add qlvlh’
’add omega’
’add mass’
’set mass’
’add body’
’add component’
’lock mass properties’
’unlock mass properties’
’update body mass properties’
’spacecraftplugin’
’create body arrays’
’add subsystem’
’add subassembly’
’add panel’
’compute paths’
’table’
’export cad model’
’get cad model’
’quit’
’help’

7.2.2 Geometry

We mentioned above that each model consists of bodies and components. Each component is defined in a local frame,
for example the cylinder primitive in the SCT has height along the Z axis. The component center of mass is defined
in this frame. In the case of a cylinder, this is measured from the base, cM = [0;0;h/2]. The inertia matrix is
defined about the center of mass. Each component can then be placed in a body using two vectors and a rotation in
between them. The vectors are depicted in Figure 7.1 on the next page with a cylinder primitive. The matrix b rotates
from the component frame to the body frame. rA is the displacement of the unrotated component, i.e. after rotation
to the body frame, and rB is before. Most components in the SCT examples are placed using rA and b without rB.

The equation for the geometric location of the component’s center of mass (rCM or cM) in the body frame is

rCM |body = rA + b ∗ (rB + rCM |comp)

where the component center of mass is measured in its frame as defined by b.

The bodies are defined in a tree configuration. Each body has a hinge vector defined in the frame of the previous
body. The hinge rotation matrix also expresses the rotation into the previous body’s frame. The center of mass of the
body, computed by BuildCADModel from the included components, is referenced from the hinge vector in the body
frame.

Assume a second body is attached to the core. The core hinge rotation is Bcore and the second body hinge rotation
is BH . The second body’s hinge vector is rH . The equation for the location of the second body’s components in the
core frame is

r = Bcore ∗ (rH +BH ∗ (rA + b ∗ rB))

where we see again that the hinge vector is defined in the previous body’s frame, rA is in the body frame and rB and
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Figure 7.1: Component geometry and frames
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cM are in the component frame. The body’s center of mass in the core frame is

rCM |core = rH +BH ∗ (rCM |body)

Figure 7.2 shows the topological tree for three bodies with one component drawn.

Figure 7.2: Body geometry and frames
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See the example BuildCylinders for a systematic treatment of the vectors and rotations. The resulting plot is
shown in Figure 7.3 on the next page.

The vectors and rotations described here are explained further in the sections on bodies and components later in this
chapter, Section 7.2.5 and Section 7.2.6.
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Figure 7.3: Cylinder demo of geometry and frames. Hinge vectors are in black, rA is cyan and rB is magenta. The
axes are coded X (blue), Y (green), and Z (red).
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7.2.3 A Simple Example

A very simple spacecraft with one body and two components is given in the following listing from BuildSimpleSat.
The components are a core box and a single sensor. We can use this example to illustrate the steps in building a model
and to begin a discussion of the CAD properties and fields.

Listing 7.1: Simplest spacecraft CAD script BuildSimpleSat.m

1 %% A very simple spacecraft with one sensor.
2 % -------------------------------------------------------------------------
3 % See also BuildCADModel, CreateBody, CreateComponent, FindDirectory,
4 % SaveStructure
5 % -------------------------------------------------------------------------
6 %%
7 %--------------------------------------------------------------------------
8 % Copyright (c) 2005, 2007 Princeton Satellite Systems, Inc.
9 % All rights reserved.

10 %--------------------------------------------------------------------------
11

12 %% Initialize
13 %------------
14 BuildCADModel( ’initialize’ );
15

16 % Add spacecraft properties
17 %---------------------------
18 BuildCADModel( ’set name’ , ’Simple Spacecraft’ );
19 BuildCADModel( ’set units’, ’mks’ );
20

21 % Create bodies first
22 %---------------------
23 m = CreateBody( ’make’, ’name’, ’Core’ );
24 BuildCADModel(’add body’, m );
25

26 % This creates the connections between the bodies
27 %-------------------------------------------------
28 BuildCADModel( ’compute paths’ );
29

30 %% Add Components
31 %----------------
32

33 % Core
34 %------
35 m = CreateComponent( ’make’, ’box’, ’name’, ’Panels’, ’x’, 1, ’y’, 1, ’z’, 1,...
36 ’faceColor’, ’gold foil’,’inside’,0,...
37 ’rA’, [0;0;0], ’mass’, 20, ’body’, 1 );
38 BuildCADModel( ’add component’, m );
39

40 % Star Camera
41 %-------------
42 m = CreateComponent( ’make’, ’star camera’, ’model’, ’ct633’, ’name’, ’Camera’,...
43 ’rA’, [0.4;0.4;0.4], ’body’, 1, ’boresight’,[1;0;0], ...
44 ’faceColor’, ’aluminum’ );
45 BuildCADModel( ’add component’, m );
46

47 %% Save the model
48 %----------------
49 g = BuildCADModel( ’get cad model’ );
50 BuildCADModel( ’show spacecraft’ );
51 d = FindDirectory(’SCModels’);
52 SaveStructure( g, fullfile(d,’SimpleSat’) )
53

54 %--------------------------------------
55 % $Date: 2019-08-05 16:08:47 -0400 (Mon, 05 Aug 2019) $
56 % $Revision: 49452 $

BuildSimpleSat.m

If you execute this script you will see Figure 7.4 on the following page. You can’t change any properties using this
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Figure 7.4: Simple Sat

GUI but you can view the properties at the component, body and vehicle levels. See Section 7.2.9 for more information
on using this GUI.

The CreateBody and CreateComponent functions are described further in later sections. Each function is
passed an action, in this case make, and then a set of parameter/value pairs. We can see from this example that the
model has the following sections:

1. Properties, in this case the mass, can be grouped at the top of the script for easy reference.

2. The BuildCADModel function is initialized and some spacecraft parameters, such as the name and units, are
set.

3. The bodies are created.

4. The paths between the bodies are computed. You must add this call even if there is only one body for the model
to have the correct fields.

5. The components are created and assigned to bodies.

6. The completed model is extracted and stored as a mat-file.

We can note a few other things from this example. First, all components are considered to be inside the spacecraft by
default; these components are ignored for the purposes of disturbance analysis. This enables you to have many com-
ponents inside, such as reaction wheels and batteries, without all those extra surfaces slowing down the computations.
As a result, any components which are not inside must be explicitly set to be so using inside,0.

An ECI position vector and quaternion are required as spacecraft properties to draw the spacecraft in an orbit view.
The additional fields you can set (qlvlh, veci, etc) enable you to use the CAD model as a database for default
properties.

To view the resulting model structure, type g at the command line.

>> g
g =

name: ’Simple Spacecraft’
units: ’mks’
body: [1x1 struct]

component: [1x2 struct]
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radius: 8.660254037844386e-01
mass: [1x1 struct]

All models, no matter how simple or complex, will have these fields. The name and units are straightforward. The
body and component fields are structure arrays. The radius is the radius of a sphere encompassing the model. The
mass is a structure with the total mass, inertia, and center of mass of the vehicle.

You might notice that we did not specify a mass for the camera. In fact, there are defaults for all the component
parameters. To see what values were used, first get the list of component fields.

>> g.component
ans =
1x2 struct array with fields:

faceColor
edgeColor
diffuseStrength
specularStrength
specularExponent
specularColorReflectance
b
rA
v
f
a
n
r
radius
deviceInfo
class
name
optical
infrared
thermal
power
aero
magnetic
mass
inside
rF
body
manufacturer
model

The components also have a field called mass. The camera was the second component, so we look at its mass:

>> g.component(2).mass
ans =

mass: 2.837
cM: [3x1 double]

inertia: [3x3 double]
>> g.component(2).mass.cM
ans =

0.54224
0.4
0.4

>> g.component(2).mass.inertia
ans =

0.0064267 0 -5.4041e-18
0 0.030765 0

-5.4041e-18 0 0.030765
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The mass and inertia were looked up via StarCameraModel, for the CT633 model specified. The center of mass is
referenced from the origin of the component’s frame.

The mass properties of the spacecraft are automatically computed from the components when we retrieve the model
using get cad model. We will see that the mass is the total of the two component masses and the inertia and center of
mass are offset; the inertia has off-axis terms due to the camera. You will also find that the body properties and the
vehicle properties are, in this case, the same.

>> g.mass
ans =

mass: 22.837
inertia: [3x3 double]

cM: [3x1 double]
>> g.mass.inertia
ans =

4.1348 -0.53889 -0.53889
-0.53889 4.4922 -0.39753
-0.53889 -0.39753 4.4922

>> g.mass.cM
ans =

0.067362
0.049691
0.049691

You can more easily find the default values of properties by examining the function GenericProperties. This
function is used by CreateComponent. The following is an excerpt from the GenericProperties header. The
function has a built-in demo which prints a list of the properties with descriptions.

-------------------------------------------------------------------------------
Generates generic properties for type:

’thermal’
’absoprtivity’,’emissivity’,’heatGeneratedOn’,’heatGeneratedStandby’,
’temperature’,’surfaceArea’,’uNormal’,’thermalMass’

’power’
’powerStandby’, ’powerOn’,’electricalConversionEfficiency’,
’powerHeater’,’powerIsOn’

’optical’
’sigmaT’, ’sigmaA’, ’sigmaD’, ’sigmaS’

’infrared’
’sigmaRT’, ’sigmaRA’, ’sigmaRD’, ’sigmaRS’

’mass’
’mass’, ’cM’, ’inertia’

’aero’
’cD’

’rF’
’flux’, ’u’, ’r’

’magnetic’
’dipole’

’propulsion’
’thrust’ ’iSP’ ’feedPressure’ ’efficiency’

’graphics’
’faceColor’ ’edgeColor’ ’specularStrength’ ’diffuseStrength’
’inside’

You can customize properties by adding property/value pairs.
Type GenericProperties to have a list describing the properties printed to
the command window.

-------------------------------------------------------------------------------
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For example, we can check the default thermal properties directly.

>> p = GenericProperties(’thermal’)
p =

absorptivity: 0.1000
emissivity: 0.8000

heatGeneratedOn: 0
heatGeneratedStandby: 0

temperature: 300
surfaceArea: 1

uNormal: [3x1 double]
thermalMass: 1

7.2.4 Setting Spacecraft Properties

The following code sets selected spacecraft properties:
1 BuildCADModel( ’initialize’ );
2 BuildCADModel( ’set name’ , ’MySpacecraft’ );
3 BuildCADModel( ’set units’, ’mks’ );
4 BuildCADModel( ’set rECI’ , rECI );
5 BuildCADModel( ’set vECI’ , vECI );
6 BuildCADModel( ’set qLVLH’, qLVLH );
7 BuildCADModel( ’set qECIToBody’, q );
8 BuildCADModel( ’set omega’, omega );
9 BuildCADModel( ’set mass’, mass );

An orbit can be set for use by the spacecraft visualization tools, for instance by using variables called rECI and vECI
as above. BuildCADModel will automatically initialize itself if you do not initialize it. Except for setting the name,
the other calls are optional, except that a quaternion and ECI position are required for the orbit view. You can set
the mass properties using the ’set mass’ action or allow BuildCADModel to compute the mass from the component
mass properties. This requires that you include all components to get an accurate mass and inertia. The input to mass
is the mass data structure which can be assembled using, for example,

mass = MassStructure( 2100, ’box’, [coreX coreY coreZ] );

which returns a data structure with the mass, inertia and center-of-mass.

7.2.5 Creating Bodies

The next step after setting the model-wide properties is to define the bodies. Bodies are essentially containers for
components that allow you to define rigid assemblies which can be rotated independently. Mass properties including
inertia and center of mass are computed at the body level in addition to the vehicle level. Topological trees defined via
a CAD model can be simulated dynamically using PSS’ Tree function. You must always define at least one body.
The example below creates a total of four bodies, with the latter three bodies attached to the core (first body).

1

2 %% Initialize
3 %------------
4 BuildCADModel( ’initialize’ );
5

6 % Add spacecraft properties
7 %---------------------------
8 BuildCADModel( ’set name’ , ’Simple Spacecraft’ );
9 BuildCADModel( ’set units’, ’mks’ );

10

11 % The core
12 %---------
13 q = CreateBody( ’make’, ’name’, ’Core’ );
14 BuildCADModel(’add body’, q );
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15 % Rotating bodies
16 %--------------
17 axis = [1 2 3];
18 for k = 1:3
19 m = CreateBody( ’make’, ’name’, [’Boom ’ num2str(k)], ’bHinge’, struct( ’b’, eye(3),’axis’,

axis(k) ), ...
20 ’previousBody’, 1, ’rHinge’, [0;0;0] );
21 BuildCADModel(’add body’, m );
22 end

The first input to CreateBody is the action ’make’. The remainder are parameter/value pairs. You can get a list of
parameters by typing: CreateBody(’parameters’)

>> CreateBody(’parameters’)
ans =

1 7 cell array
{’name’} {’rHinge’} {’bHinge’} {’previousBody’} {’mass’} {’

inertia’} {’cM’}

The rHinge parameter defines the origin of the body relative to the origin of the spacecraft or to the previous body
in the chain. bHinge defines the rotation to the previous body. All components added to the body will be rotated by
bHinge as well so that the body rotates as a single assembly. bHinge is a data structure defines the hinge. The fields
are

bHinge.b (3,3) Transformation matrix
bHinge.q (4,1) Quaternion
bHinge.angle (1,1) Angle of rotation (radians)
bHinge.axis (1,1) Axis of rotation 1=x, 2=y, 3=z (default)

You can define a rotation using the transformation matrix and either the quaternion or angle. If you choose the angle
it defines a single axis rotation about the axis defined by the axis field. For a two angle hinge you need to use the b
field. See the BHinge function which uses this structure to define the rotation and the function Eul2Mat which is
useful for generating transformation matrices.

The parameter previousBody points to the previous body in the chain. In this case it is the core. You must define
bodies before defining components since each component needs to be assigned a body when it is created.

7.2.6 Creating Components

The function CreateComponent works in a similar fashion to CreateBody. All parameters needed for dis-
turbance analysis, such as optical properties, are defined at the component level in addition to the surface geom-
etry. There are two supporting functions which help set up the many parameters, GenericProperties and
DeviceProperties. Defaults are available for nearly all parameters and there are many types of components
to choose from.

Recall the camera component from BuildSimpleSat,

m = CreateComponent( ’make’, ’camera’, ’model’, ’ct633’, ’name’, ’Camera’,...
’rA’, [0.4;0.4;0.4], ’body’, 1, ’unitVector’,[1;0;0], ...
’faceColor’, ’aluminum’ );

BuildCADModel( ’add component’, m );

The first input is the action (make), the second is the component type (camera). The remainder are parameter/-
value pairs. All such inputs are optional and many depend on the type of component. You can add components in
any order. CreateComponent is a complicated function but there are some function calls to help. For example,
CreateComponent can output a list of all available types, (it’s a long list!)

>> CreateComponent(’type’)
------------------------------
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Components
------------------------------

’sphere’
’box’
’cylinder’
’cubesat’
’hollow cylinder’
’hollow box’
’hollow sphere’
’antenna’
’ellipsoid’
’surface of revolution’
’triangle’
’empty’
’generic’
’angle of attack sensor’
’battery’
’camera’
’current sensor’
’earth sensor’
’f16 gas turbine’
’fuel tank’
’gps receiver’
’ground link antenna’
’gun’
’hall thruster’
’heater’
’hydrazine tank’
’hydrazine thruster’
’imu’
’isl’
’lem’
’magnet’
’magnetic torquer’
’magnetometer’
’nuclear reactor’
’omni’
’onoff thruster’
’pcu’
’position sensor’
’power relay’
’radar’
’radiator’
’rate gyro’
’rea’
’reaction wheel’
’relative position sensor’
’rocket engine’
’sail’
’shunt’
’single axis drive’
’single axis linear drive’
’single axis stepper drive’
’solar array’
’solar array back’
’solar array front’
’solar panel’
’star camera’
’star tracker’
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’state sensor’
’temperature sensor’
’two axis sun sensor’
’wheel’

The geometric primitives are listed first, followed by spacecraft part types. A generic component must be defined
using a vertex and face list, but the other components require only a few parameters (such as radius for a sphere) and
the shape will be defined for you. All component shapes result in a set of triangles.

There is a set of generic inputs that apply to every component, including the name, position vectors and rotation matrix.
To see this list type

>> CreateComponent( ’inputs’ )
------------------------------
Additional generic inputs
------------------------------

name Name of component
rB Displacement of component before rotation
b Rotation transformation matrix

rA Displacement of component after rotation
body ID of body to which component is attached

inside If a body is inside the model it is not used in
disturbance calculations

dataFileName Data file name, passed to BuildCADModel
model Model string

manufacturer name of manufacturer

These are the critical parameters where you place your component in particular location, rotate it as needed, and assign
it to a body. The matrix is the rotation required to transform from the component frame to the body frame. Note that
rA is the displacement of the rotated component, i.e. after rotation to the body frame, and rB is a displacement before
the rotation, so rA is defined in the body frame and rB is defined in the component frame. The center of mass of the
component is also in the component frame. Recall from the section on geometry (7.2.2) that

rCM |body = rA + b ∗ (rB + rCM |comp)

The default location (rA and rB) is simply zero and the body is 1. If you forget to name your component it will be
called ’no name’. All components are inside by default.

The only parameters that you truly need to enter when you make a component are the small set of properties needed
to define its geometry.

You can find out what parameters are relevant to a particular component by typing, for example,

>> CreateComponent(’parameters’,’imu’)
------------------------------
Parameters for imu
------------------------------

’rUpper’
’rLower’
’h’
’n’
’thermal.absorptivity’
’thermal.emissivity’
’thermal.heatGeneratedOn’
’thermal.heatGeneratedStandby’
’thermal.temperature’
’thermal.surfaceArea’
’thermal.uNormal’
’thermal.thermalMass’
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’mass.mass’
’mass.cM’
’mass.inertia’
’power.powerStandby’
’power.powerOn’
’power.electricalConversionEfficiency’
’power.powerHeater’
’power.powerIsOn’
’optical.sigmaT’
’optical.sigmaA’
’optical.sigmaD’
’optical.sigmaS’
’infrared.sigmaRT’
’infrared.sigmaRA’
’infrared.sigmaRD’
’infrared.sigmaRS’
’aero.cD’
’rf.flux’
’rf.u’
’rf.r’
’magnetic.dipole’
’propulsion.thrust’
’propulsion.iSP’
’propulsion.feedPressure’
’propulsion.efficiency’
’graphics.faceColor’
’graphics.edgeColor’
’graphics.diffuseStrength’
’graphics.specularStrength’
’graphics.specularColorReflectance’
’graphics.specularExponent’
’deviceInfo.scale’
’deviceInfo.bias’
’deviceInfo.randomWalk’
’deviceInfo.angleRandomWalk’
’deviceInfo.outputNoise1Sigma’
’deviceInfo.beta’
’deviceInfo.rateLimit’
’deviceInfo.scaleFactor’
’deviceInfo.lSB’
’deviceInfo.countLimit’

The top properties listed are specific to the geometry of the IMU. The structures following are sets of properties
needed for disturbance, power, and thermal analysis, for which defaults are obtained from GenericProperties
as alluded to in Section 7.2.3. The graphics properties are used only for displaying the component in MATLAB.
The names are mostly self-explanatory except for the optical and infrared coefficients; the T, A, D, and S stand for
transmissivity, absorptivity, diffuse and specular reflectivity, respectively. These coefficients must sum to one. The
aerodynamics parameter cD is the coefficient of drag. To set any of these properties, you need only enter the field
name, i.e. absorptivity, not thermal.absorptivity. f you do not enter properties, generic properties are
used instead.

The properties relevant to the IMU (inertial measurement unit) device are the deviceInfo.xxx properties. These
properties are defined in the function DeviceProperties. Look in this function to see how the needed ge-
ometric parameters are used, for example if we search for ’imu’ we will find that the geometry is defined using
CylinderModel.

case ’imu’
p = struct(’scale’,1,’bias’,0,’randomWalk’,0,’angleRandomWalk’,0,...

’outputNoise1Sigma’,0,’beta’,0,’rateLimit’,0,’scaleFactor’,1,...
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’lSB’,1e-7,’countLimit’,16777215);
g = {’rUpper’, ’rLower’, ’h’, ’n’};
if geom
if ˜exist(’n’,’var’)

n = 12;
end
m = CylinderModel( rUpper, rLower, h, n, m, computeInertia );

end

For more information on the properties rUpper, rLower, h, and n, you would look in CylinderModel, which
is a subfunction of DeviceProperties. The geometric function called in turn is Frustrum, which has a built-in
demo.

CreateComponent will accept the list of parameters, compute defaults as needed, and outputs the component
structure for passing to BuildCADModel. All components end up with a list of vertices and faces defining the
geometry. BuildCADModel will later compute additional properties of the faces such as their area, normals, and
centroids.

Perhaps the shortest component function call outside of the demo is this:

>> m = CreateComponent(’make’,’sphere’,’radius’,5)
m =

struct with fields:

name: ’no name’
class: ’sphere’

rB: [3 1 double]
b: [3 3 double]

rA: [3 1 double]
body: 1

inside: 1
dataFileName: ’’

model: ’N/A’
manufacturer: ’N/A’
deviceInfo: []

v: [26 3 double]
f: [48 3 double]

thermal: [1 1 struct]
mass: [1 1 struct]

power: [1 1 struct]
optical: [1 1 struct]

infrared: [1 1 struct]
aero: [1 1 struct]
rf: [1 1 struct]

magnetic: [1 1 struct]
propulsion: [1 1 struct]

graphics: [1 1 struct]
nV: [48 1 double]
a: []
n: []
r: []

radius: []

Here you can see that the sphere has been defined by five vertices and six faces.

You can determine what predefined colors are available by typing
CreateComponent(’colors’). You will see the window in Figure 7.5 on the next page.
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Figure 7.5: CreateComponent color display

7.2.7 Subsystems

You can organize your components into subsystems. The following shows example subsystem commands.

1 BuildCADModel( ’add subsystem’, ’propulsion’, {’ppt’, ’thruster’} );
2 BuildCADModel( ’add subsystem’, ’mechanism’, {’drive’} );

BuildCADModel searches the component names for the strings in the cell array and associates them with the sub-
system. If the string doesnt exist it is ignored. Subsystems are used in the table form of the CAD model and in some
of the visualization capabilities.

7.2.8 Panels

You can organize your components by panels. This is purely for organizational purposes and does not affect any of
the properties of the model.

1 BuildCADModel( ’add panel’, ’north’, {’ppt’, ’thruster’} );
2 BuildCADModel( ’add panel’, ’south’, {’drive’} );

BuildCADModel searches for the strings in the cell array and associates them with the panel. If the string doesn’t
exist it is ignored. The result is a list of components stored with the panel name.

7.2.9 Viewing the CAD Model

When your CAD script is done, execute the script. The GUI shown in Figure 7.6 on the following page will
appear as in BuildSimpleSat in the beginning of this chapter. For this section we will view the results of
BuildSolarSail.m, which builds a solar sail. This demo demonstrates both generic components like the sails, ge-
ometric primitive components like the core box, and specific components with a model name like the reaction wheels.
The demo also has two subsystems, the bus and the sail.

The GUI has three tab buttons, Component, Body and Vehicle for three different views of the CAD model. When you
run a script the Component view is activated. The row above the tabs gives general information about the CAD model.
The buttons at the bottom, outside of the tab views, are: Save, for saving the model to a mat-file; Table creates the
subsystem table; Export, for exporting the model to a DSim/Satellite Simulator compatible format; Quit and Help for
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Figure 7.6: BuildCADModel Component View

online help. The scroll bars allow you to scroll through data, which in this view, is individual component data. You
cannot modify any data through the GUI. If you select a component from the popup menu, you will also get a 3D view
of that component alone. The figure to the right shows the Core component.

The subsystem table is shown below. It is stored in a text file using the name of the CAD model, in this case, Solar
Sail.mat.

Subsystem Component Mass (kg) Power (W) Heater Power (W) Manufacturer
Model

Sail Subsystem
Panel +X/+Y 2.00 0.00 0.00 none generic
Panel +X/-Y 2.00 0.00 0.00 none generic
Panel -X/+Y 2.00 0.00 0.00 none generic
Panel -X/-Y 2.00 0.00 0.00 none generic
Drive +X/+Y 0.50 0.00 0.00 none generic
Drive +X/-Y 0.50 0.00 0.00 none generic
Drive -X/+Y 0.50 0.00 0.00 none generic
Drive -X/-Y 0.50 0.00 0.00 none generic
Sail +X 20.00 0.00 0.00 none generic
Sail -X 20.00 0.00 0.00 none generic
Sail +Y 20.00 0.00 0.00 none generic
Sail -Y 20.00 0.00 0.00 none generic

Bus Subsystem
RWA X 14.30 0.00 0.00 none hr60
RWA Y 14.30 0.00 0.00 none hr60
RWA Z 14.30 0.00 0.00 none hr60
South Array 0.03 0.00 0.00 none generic
North Array 0.03 0.00 0.00 none generic
Core 10.00 0.00 0.00 none generic
Radiator +Y 2.00 0.00 0.00 none generic
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Radiator -Y 2.00 0.00 0.00 none generic
Chassis 3.00 0.00 0.00 none generic
Battery 12.00 0.00 0.00 none generic
Total 161.95 0.00 0.00

If you push the Body tab you get the body view with body level data, shown in Figure 7.7. The list of components
associated with the body is given in a popup menu on the left. In the Vehicle view, if you push the Show Vehicle

Figure 7.7: BuildCADModel Body view

button you get a 3D window with the spacecraft and a list of components organized by body, see Figure 7.8 on the
following page and Figure 7.9 on the next page.

The radio buttons in the Vehicle tab select the mode. If All is selected all components are shown. If Add is selected,
no components are shown and you add them by clicking on the component in the list. If Subtract is selected all
components are shown and you remove components by clicking on the component in the list. Within the 3D view,
you can highlight certain subsystems. The buttons on the left of the window toggle each subsystem’s, or the whole
spacecraft’s, transparency. See Figure 7.10 on page 69, where the sail subsystem has been made transparent. You can
also adjust the Open Model slider to get an “exploded” view of the spacecraft as shown on the right, where the sail
components have been subtracted and the remaining bus components have been spaced apart.

The Show Spacecraft in Orbit button shows the spacecraft in orbit around the earth. You need to specify an orbit
position and quaternion for this feature, as is done in the following lines:

1 BuildCADModel( ’set rECI’ , rECI );
2 BuildCADModel( ’set vECI’ , vECI );
3 BuildCADModel( ’set qLVLH’, qLVLH );
4 BuildCADModel( ’set qECIToBody’, q );
5 BuildCADModel( ’set omega’, omega );

An example view of another sail model in orbit is shown on the right in Figure 7.9 on the next page. The quaternions
set here are used only for display purposes.
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Figure 7.8: Vehicle tab with Show Vehicle pushed

Figure 7.9: 3D View obtained by pushing Show Vehicle, left, and another sail model shown using Show Spacecraft in
Orbit, right
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Figure 7.10: Subsystem Transparency and Exploded views

The Show 2D Plan button shows a 2D picture with 2D views of all of the components. The components are scaled to
fit inside the same size rectangle.

Figure 7.11: 2D View from clicking Show 2D Plan

7.2.10 Importing Models

Another model can be imported if it has previously been saved as a .mat file. This uses the ’add subassembly’
action of BuildCADModel.
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1 BuildCADModel( ’add subassembly’, ’Bus.mat’, gimballedBoomBody, r, eye(3) )

The second argument is the mat file, the third is the body to which the subassembly is to be attached, the fourth is the
location in that body and the fifth rotates the subassembly (prior to moving to the specified location.)

You can also import geometry information from other model types, such as dxf files, and use it to create a CAD
component. The generic component type allows you to pass in the face and vertex data directly. See LoadCAD. A
number of dxf files are included in the SCData folder as examples, including models of Hubble, Cassini, and the
Huygens probe. Some are more fanciful, for instance,

>> LoadCAD(’TFIGHTER.dxf’)

draws a picture of a tie fighter, shown in Figure 7.12 on the facing page. If you call the function with the output, you
will get the following data structure:

>> gFighter = LoadCAD(’TFIGHTER.dxf’)

gFighter =

name: ’TFIGHTER.dxf’
component: [1x1 struct]

radius: 292.3833

>> gFighter.component

ans =

name: ’0’
faceColor: [0.7320 0.7320 0.7320]

diffuseStrength: 0.3000
specularStrength: 0.3000
ambientStrength: 1
specularExponent: 10

specularColorReflectance: 1
inside: 0

mass: [1x1 struct]
v: [2464x3 double]
f: [616x3 double]
n: [616x1 double]

where you can see that there are 2464 vertices and 616 faces in the model. The Strength, Exponent, and
Reflectance fields are for drawing in MATLAB only; they do not represent true optical properties are not used in
disturbance modeling.

7.2.11 Exporting

Export a model from the GUI by pushing Export. Save the file (*.cad) to your selected location as prompted by the
popup window. This is a text description of your model in which all the vertices and faces which were computed by
CreateComponent are listed in full. For example, one of the sails from the BuildSolarSail results in this text
in the .cad file:

componentname Sail +Y
componenttype generic
numberofvertices 3
numberoffaces 1
color [ 1.0000 0.9000 0.5000]
magneticdipole [ 0.0000 0.0000 0.0000]
sigmat 0.0000
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Figure 7.12: Tie fighter as loaded from a dxf file

sigmaa 0.0500
sigmad 0.5500
sigmas 0.4000
absorptivity 0.1000
emissivity 0.8000
heatgeneratedon 0.0000
heatgeneratedstandby 0.0000
poweron 0.0000
powerstandby 0.0000
electricalconversionefficiency 0.0000
dragcoefficient 2.7000
vertex 0.0000 0.8000 -0.7500
vertex 22.3607 23.1607 -0.7500
vertex -22.3607 23.1607 -0.7500
face 1 2 3

The sail is a triangle, so there are three vertices and a single face. The export can also be performed in your script
using the function ExportCAD.

Another available function is ExportOBJ (professional edition of the toolbox only). This function will create 3
files:

myFile.obj
myFile.mtl
myFile.cad

The first two are Wavefront OBJ formatted files. The first contains the geometry and the second the material properties
(color). The last file contains the component non-graphic parameters including mass, inertia and specific component
properties. It also contains the connection information between the bodies. The first two files are compatible with any
graphics package that imports OBJ formatted files. The last is used by Princeton Satellite Systems VisualCommander.

ExportOBJ requires the CAD data to be passed in as a data structure. This structure can be obtained at the end of a
CAD script using the line
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g = BuildCADModel( ’get cad model’ );

You can save the data structure as a .mat file by pushing the Save button. The equivalent function call for a script is

SaveStructure( g, ’MyCADFileName’ );

The structure can then be retrieved simply by loading the mat-file into a variable, i.e.

g = load(’MyCADFileName.mat’);

7.3 Visualizing your CAD Model

Once you have created a CAD model you will want to use it in other scripts. There are several functions for visualizing
models:

• ShowCAD

• DrawCAD

• DrawSC

• DrawSCPlanPlugIn

• DrawSCPlugIn

Each requires the CAD model to be loaded as a data structure as explained in Section 7.2.11. DrawSCPlanPlugIn
draws a spacecraft in a plain 3D box. The simplest way to use it to view a model is

g = load(’XYZSat.mat’);
tag = DrawSCPlanPlugIn( ’initialize’, g );

See the figure in Figure 7.13. This is the same view that can be obtained using the Show Vehicle button in the CAD
model GUI.

Figure 7.13: DrawSCPlanPlugIn showing the XYZSat model

You can create a figure like this inside a script, then update it iteratively in a loop using the call
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DrawSCPlanPlugIn( ’update’, tag, g );

where we are using the tag which was returned from the initialization call. There are additional actions for this
function explained in its header. For example, you might be rotating the solar arrays of a spacecraft and you want
to visualize this. You have to update the fields of g as needed between calls to the plug in and the new locations or
rotations will be drawn. You can change any value of g, for instance we can change the color of the core box. First,
examine the g structure.

g =
name: ’Cube Spacecraft’

units: ’mks’
rECI: [3x1 double]
vECI: [3x1 double]

qLVLH: [4x1 double]
q: [4x1 double]

omega: [3x1 double]
mass: [1x1 struct]
body: [1x1 struct]

component: [1x4 struct]
radius: 1.500149992500750e+00

To see the names of the components in a neat list, type

>> {g.component.name}
ans =

’Core’ ’X Axis’ ’Y Axis’ ’Z Axis’

The core is the first component. To view its fields, type

>> g.component(1)
ans =

faceColor: [1 8.000000000000000e-01 3.400000000000000e-01]
edgeColor: [1 8.000000000000000e-01 3.400000000000000e-01]

diffuseStrength: 3.000000000000000e-01
specularStrength: 1
specularExponent: 25

specularColorReflectance: 1
b: [3x3 double]

rA: [3x1 double]
v: [8x3 double]
f: [12x3 double]
a: [12x1 double]
n: [12x3 double]
r: [12x3 double]

radius: [12x1 double]
deviceInfo: {}

class: ’box’
name: ’Core’

optical: [1x1 struct]
infrared: [1x1 struct]
thermal: [1x1 struct]
power: [1x1 struct]
aero: [1x1 struct]

magnetic: [1x1 struct]
mass: [1x1 struct]

inside: 0
rF: [1x1 struct]

body: 1
manufacturer: ’none’

model: ’generic’
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We will rewrite the faceColor field. Set the field to any RGB triple, the update the plug in. For example,

>> g.component(1).faceColor = [1 0.5 1];
>> DrawSCPlanPlugIn( ’update’, tag, g )

The core is now lavender, as shown in Figure 7.14.

Figure 7.14: DrawSCPlanPlugIn showing the XYZSat model after a change to g
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DrawSCPlanPlugin can display vectors, such as sun and nadir vectors, to aid in visualization. For an example this
see DisturbanceBatchDemo. The code used to update the vectors is

>> DrawSCPlanPlugIn( ’vectors’, tag, g, uSun );

where the rECI and vECI fields are used for the position and velocity vectors and a sun vector is passed in. When
the satellite is in eclipse the entire axes are shaded gray.

Figure 7.15: DrawSCPlanPlugIn showing a satellite with vectors. The green vector is nadir, the yellow vector the
sun, and the red vector the orbital velocity.

There is a similar function for viewing your spacecraft in orbit, DrawSCPlugIn. This is also the same function
called from the CAD GUI for the button Show Spacecraft in Orbit. This function has initialization and update calls
as well. A good example is ShuttleSim, which simulates the opening of the bay doors as the shuttle moves in its
orbit. Each door is stored in the model as a separate body. The code is quite compact so we include it here. Note
that the Earth is passed in explicitly so that you can view a spacecraft in reference to any planet or moon for which a
texture is available. Note the use of the functions SetCADQuaternion, SetCADState, and SetCADRotation
to interact with the CAD model struct.

Listing 7.2: Shuttle simulation visualizing the opening of the bay doors during an orbit simulation ShuttleSim.m

1 %% Simulate the space shuttle model.
2 % We rotate the shuttle bay doors and the attached robot arm using the body
3 % hinge structure of the CAD model. The shuttle model is loaded from a mat-file.
4 % This script shows how to interact with DrawSCPlugIn in a simulation loop.
5 % ------------------------------------------------------------------------
6 % See also DrawSCPlugIn, QLVLH, QPose, StopGUI, RK4,
7 % JD2000, El2RV
8 % ------------------------------------------------------------------------
9 %%

10 %--------------------------------------------------------------------------
11 % Copyright 1999 Princeton Satellite Systems, Inc. All rights reserved.
12 %--------------------------------------------------------------------------
13

14 %% Constants
15 %----------
16 degToRad = pi/180;
17
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18 %% Global for the time GUI
19 %------------------------
20 global simulationAction
21 simulationAction = ’ ’;
22

23 g = load(’ShuttleModel’);
24

25 %% Initialize the orbits
26 %----------------------
27 [r1,v1] = El2RV( [7000 61*degToRad 0 0 0 0]);
28 x1 = [r1;v1];
29 t = 0;
30 jD = JD2000;
31

32 %% Initialize the 3D window
33 %-------------------------
34 g = SetCADQuaternion( g, QLVLH( r1, v1 ) );
35 g = SetCADState( g, r1, v1 );
36 g.name = ’Space Shuttle Orbiter’;
37 tag3DWindow = DrawSCPlugIn( ’initialize’, g, [], [], ’Earth’, jD );
38

39 dTSim = 1;
40

41 %% Generate the two orbits using numerical integration
42 %----------------------------------------------------
43 doorAngle = 0;
44 rMSAngle = 0;
45 StopGUI( ’Space Shuttle’ );
46

47 rMSAxis = [3 2 2 2 2];
48

49 while t<120
50

51 % Transformation matrices
52 %------------------------
53 g = SetCADQuaternion( g, QLVLH( x1(1:3), x1(4:6) ) );
54 g = SetCADState( g, x1(1:3), x1(4:6) );
55 if( doorAngle > -139 )
56 doorAngle = doorAngle - 1;
57 elseif( rMSAngle < 45 )
58 rMSAngle = rMSAngle + 1;
59 end
60 g = SetCADRotation( g, ’body’, 2, ’axis’, 1, ’angle’, doorAngle*pi/180 );
61 g = SetCADRotation( g, ’body’, 3, ’axis’, 1, ’angle’, -doorAngle*pi/180 );
62 for j = 1:5
63 g = SetCADRotation( g, ’body’, j+3, ’axis’, rMSAxis(j), ’angle’, -rMSAngle*pi/180 );
64 end
65

66 DrawSCPlugIn( ’update spacecraft’, tag3DWindow, g, jD );
67

68 % Propagate the orbits
69 %---------------------
70 x1 = RK4( @FOrbCart, x1, dTSim, t, [0;0;0] );
71

72 % Update the time
73 %----------------
74 t = t + dTSim;
75 jD = jD + dTSim/86400;
76

77 % Time control
78 %-------------
79 switch simulationAction
80 case ’pause’
81 pause
82 simulationAction = ’ ’;
83 case ’stop’
84 return;
85 case ’plot’
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86 break;

ShuttleSim.m
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CHAPTER 8

ATTITUDE SIMULATIONS

Several different functions are included in the toolbox for simulating spacecraft attitude dynamics. They range from
simple rigid body models to sophisticated multi-body models. This chapter provides an overview of the available
models and looks in depth at two of the included demos.

8.1 Dynamics Models

The toolbox has numerous dynamical models for spacecraft. These include attitude and orbit dynamics as well as
component dynamics. Attitude dynamics range from rigid bodies to multiple bodies in a topological tree. A simple
rigid body attitude simulation can be embodied in the function,

xDot = ASim( x, t, inertia, torque );

which contains the following code,

xDot = [QIToBDot( x(1:4), x(5:7)); RBModel( x(5:7), inertia, torque)];

The first four elements of x form the quaternion from the inertial frame to the body frame. The last three elements of
x are the inertial body rates measured in the body frame. t is not used in ASim. This function is used in Example 8.1
on the next page. Initializing xPlot in the script speeds up the script considerably. Notice the use of brackets in x to
make the script easier to read.

8.2 Wire Model

The wire model simulates a spacecraft with deployable wires as is illustrated in Figure 8.1. Two models are included.

Figure 8.1: Wire model
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Example 8.1 Rigid Body Attitude Simulation

1 dT = 0.01;
2 nSimSteps = 1000;
3 inertia = [3000,0,0;0,1000,0;0,0,1000];
4 torque = [0;0;0];
5 xPlot = zeros(7,nSimSteps);
6 tPlot = zeros(1,nSimSteps);
7 x = [ [1;0;0;0]; [1;0;0] ];
8 t = 0;
9 for k = 1:nSimSteps,

10 xPlot(:,k) = x;
11 tPlot(k) = t;
12 zIO(1:3,4) = [0;0;0];
13 x = RK4(’ASim’,x,dT,t, inertia,

torque);
14 t = t + dT;
15 end
16 Plot2D(tPlot,xPlot,’Time (sec)’,{’Q’;’\omega’

},...
17 ’Rigid Body’,’lin’,{[1:4],[5:7]});
18 legend(’x’,’y’,’z’)
19 subplot(2,1,1)
20 legend(’1’,’2’,’3’,’4’)

Rigid Body
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WireFRB includes the extensional dynamics, modeling the stretching of the wire. The second, WireC, applies kine-
matic constraints to control the length between wire nodes. The former can introduce very high frequency dynamics
into the simulation but is useful if you expect the wire to stretch. The latter is useful for most scientific satellites with
copper or aluminum wires. Either model can simulate deployment and both account for system center-of-mass motion.
A spacecraft can have any number of wires.

The demo script WireSimG, listed below, illustrates the use of the model.

Listing 8.1: Wire Simulation: Header WireSimG.m

%------------------------------------------------------------------------
% This script demonstrates the deployment of the wire from the
% spacecraft. This model assumes that the center-of-mass of the
% spacecraft does not move as the wires deploy. The simulation
% models the wire as a string of masses connected by springs.
% Orbit dynamics and gravity gradient are included.
%------------------------------------------------------------------------
% Copyright 1997 Princeton Satellite Systems, Inc. All rights reserved.
%------------------------------------------------------------------------
% Clean up the workspace
%-----------------------
clear all
% Global for the time GUI
%------------------------
global simulationAction
simulationAction = ’ ’;

% Constants
%----------
false = 0;
true = 1;

WireSimG.m

These parameters manage the script. kConst determines whether the constrained model is to be used.

Listing 8.2: Wire Simulation: Initialization WireSimG.m

% Simulation parameters
%----------------------
tSim = 120.0;
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dT = 0.125;
nSim = tSim/dT;
nPlot = min([tSim/dT 200]);
nPMax = floor(nSim/nPlot);
nPlot = floor(nSim/nPMax);
gGOn = false;
kConst = true;

% Print the time to go message every nTTGo steps
%------------------------------------------------
nTTGo = 1000;

WireSimG.m

The core body information follows. The model includes orbit dynamics.

Listing 8.3: Wire Simulation: Spacecraft properties WireSimG.m

% Spacecraft properties
%----------------------
mass = 800; % kg
r0 = [0;0;0];
inertia = [104 0 0;0 107.8 0;0 0 125.4];
% Orbital elements [a i W w e M]
%-------------------------------
el = [7000;0;0;0;0;0];
muEarth = 3.98600436e5;
% Initial rigid body state
%-------------------------
[rECI, vECI] = El2RV( el );
omega = [0;0;0.5]*pi/30;
q = [1;0;0;0];
torque = [0;0;0]; % On the central body
force = [0;0;0]; % On the central body

WireSimG.m

Next, create the wires. You can have as many wires as you like. Each column represents one wire. If you are using the
constrained equations you can ignore the spring and damping constants.

Listing 8.4: Wire Simulation: Initialization of the wire model WireSimG.m

% The wire model. Each column is one wire
%----------------------------------------
nNodes = [ 3 3 ];
rWireBase = [0 0;0.6 -0.6;0 0];
lWireMax = [0.04 0.08];
massWire = [0.4 0.4];
kSpring = [ 3.0 3.0]; % Used only by WireFRB
cSpring = [ 0.5 0.5 ]; % Used only by WireFRB
cDeploy = cSpring; % Used only by WireFRB
nodeDeploying = [ 0 0 ]; % To start undeployed set these to 3
vDeploy = [ 0.001 0.001 ]; % m/sec
% Initialize the wire data structure
%-----------------------------------
[wireDS, x] = WireInit( nNodes, mass, massWire, lWireMax, kSpring, cSpring, vDeploy, cDeploy,

nodeDeploying, rWireBase, rECI, vECI, q, omega, r0, inertia, gGOn );

WireSimG.m

alpha is a constraint torque gain. mu determines the damping, omega the constraint stiffness. The number of
iterations is generally less than 2.

Listing 8.5: Wire Simulation: Kinematic constraints WireSimG.m

% If using the kinematic constraints
%-----------------------------------
penalty.alpha = 1e6;
penalty.mu = 1;

Spacecraft Control Toolbox 81



8.2. WIRE MODEL CHAPTER 8. ATTITUDE SIMULATIONS

penalty.omega = 10;
penalty.nIts = 2;

WireSimG.m

Initialize the plotting arrays.

Listing 8.6: Wire Simulation: Initialization of plotting WireSimG.m

% Plotting arrays
%----------------
xPlot = zeros(length(x),nPlot);
hPlot = zeros(1,nPlot);
tPlot = zeros(1,nPlot);
nP = 0;
kP = 0;
t = 0;
% Initialize the time display
%----------------------------
tToGoMem.lastJD = 0;
tToGoMem.lastStepsDone = 0;
tToGoMem.kAve = 0;

% Initialize the status message function
%---------------------------------------
[ratioRealTime, tToGoMem] = TimeToGo( nSim, 0, tToGoMem, 0, dT );

WireSimG.m

The simulation loop is next. The first part shows the plotting functions.

Listing 8.7: Wire Simulation: Simulation loop plotting WireSimG.m

for k = 1:nSim

% Display the status message
%---------------------------
[ratioRealTime, tToGoMem] = TimeGUI( nSim, k, tToGoMem, ratioRealTime, dT );
% Plotting
%---------
if( nP == 0 )
kP = kP + 1;
xPlot(:,kP) = x;
hPlot(kP) = WireH( x, wireDS );

tPlot(kP) = t;
nP = nPMax - 1;

else
nP = nP - 1;

end

WireSimG.m

This is the simulation. WireDMch simulates the deployment mechanism. It just assigns a nonzero extensional rate to
the innermost wire segment.

Listing 8.8: Wire Simulation: Dynamics model WireSimG.m

% Choose either the extensional stiffness or constrained wire models
%--------------------------------------------------------------------

if( kConst == true )
x = RK4( ’WireC’, x, dT, t, wireDS, muEarth, torque, force, penalty );

else
x = RK4( ’WireFRB’, x, dT, t, wireDS, muEarth, torque, force );

end
t = t + dT;
[wireDS, x] = WireDMch( wireDS, x, t );
% Time control
%-------------
switch simulationAction
case ’pause’
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pause
simulationAction = ’ ’;

case ’stop’
return;

case ’plot’
break;

end
end

WireSimG.m

The following listing shows the plotting code.

Listing 8.9: Wire Simulation: Plotting WireSimG.m

% Output
%-------
dOmega = [xPlot(11,:) - xPlot(11,1);...

xPlot(12,:) - xPlot(12,1);...
xPlot(13,:) - xPlot(13,1)];

magH = abs(hPlot(1));
hPlot = hPlot / magH;
Plot2D( tPlot, xPlot( 1: 3,:), ’Time (sec)’, ’rECI (km)’ );
Plot2D( tPlot, xPlot( 4: 6,:), ’Time (sec)’, ’vECI (km/sec)’ );
Plot2D( tPlot, xPlot( 7:10,:), ’Time (sec)’, ’q’ );
Plot2D( tPlot, dOmega, ’Time (sec)’, ’dOmega (rad/sec)’ );
Plot2D( tPlot, hPlot - 1, ’Time (sec)’, ’H/|H(0)| - 1’ );

WirePlot( xPlot, tPlot, wireDS );

fprintf(’Max momentum change = %12.4e with dT = %8.4f and tSim = %8.4f\n’,max(abs(hPlot-1)), dT,
tSim)

WireSimG.m

The results of this wire simulation are shown in Figure 8.2.

Figure 8.2: Wire simulation: Results
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8.3 Tree Model

The tree model simulates multibody spacecraft arranged in a tree configuration.

Figure 8.3: Topological Tree

There can be no closed loops which also means that for any component exactly one hinge leads to the core. All of the
sub-bodies are rigid and only rotational degrees of freedom are permitted at each hinge. In addition, the number of
degrees of freedom at a hinge can be either 3 or 1. To simulate a 2-dof hinge just interpose a massless and inertialess
body.

The demo script TreeSim, listed below, illustrates the use of the tree model, beginning with initialization.

Listing 8.10: Tree Simulation: Initialization TreeSim.m

%------------------------------------------------------------------------
% Three body simulation. The bodies are connected
%
% 1 - y DOF - 2 - zDOF - 3
%
% Overall there are 5 dof.
%
% See TreeCAD.m for a demonstration of how to use Tree with the CAD
% functions.
%
%------------------------------------------------------------------------

% Clean up the workspace
%-----------------------
close all

% Vectors from previous body reference to the hinge of the body
%--------------------------------------------------------------
lambda1 = [0;0;0];
lambda2 = [2;0;0];
lambda3 = [1;0;0];
% Vector from body reference to body c.m. For all but the core
% the reference is always the hinge that leads to the core
%-------------------------------------------------------------
r1 = [0;0;0];
r2 = [0;0.5;0];
r3 = [0;0;0.5];
% Mass and inertia
%-----------------
m1 = 100;
m2 = 2;
m3 = 5;
i1 = diag([200 200 300]);
i2 = diag([ 1 1 1]);
i3 = diag([ 3 3 1]);

TreeSim.m
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TreeAdd adds bodies to the link. You can give them a name.

Listing 8.11: Tree Simulation: Adding bodies. TreeSim.m

% Add each body to the tree data structure
%-----------------------------------------
body(1) = TreeAdd( i1, r1, lambda1, m1, 0, 0, [], [], [], [], [], ’Core’ );
body(2) = TreeAdd( i2, r2, lambda2, m2, 1, 2, [], [], [], [], [], ’Link’ );
body(3) = TreeAdd( i3, r3, lambda3, m3, 2, 3, [], [], [], [], [], ’Payload’ );

Cause the inner link to accelerate.
Tree Simulation: A hinge acceleration.
% Internal torque
%----------------
body(2).torque = 0.1;

Define a low earth orbit.
Tree Simulation: A low earth orbit.
% Initial orbit
%--------------
r = [7000;0;0];
v = [0;sqrt(3.98600436e5/7000);0];

TreeSim.m

This initializes the tree data structures and the state vector. TreePrnt prints out all of the information in the data
structure.

Initialize the multibody tree and preallocate arrays.

Listing 8.12: Tree Simulation: TreeInit TreeSim.m

% Initialize the multibody tree
%------------------------------
[treeDS, x] = TreeInit( body, r, v );

% Print out the tree
%-------------------
TreePrnt( body, treeDS );
% Plotting and initialization
%----------------------------
tSim = 20;
dTSim = 0.1;
nSim = floor(tSim/dTSim);
hPlot = zeros(1,nSim);
tPlot = zeros(1,nSim);
xPlot = zeros(length(x),nSim);
t = 0;

% Initialize the time display
%----------------------------
tToGoMem.lastJD = 0;
tToGoMem.lastStepsDone = 0;
tToGoMem.kAve = 0;
ratioRealTime = 0;
[ ratioRealTime, tToGoMem ] = TimeGUI( nSim, 0, tToGoMem, 0, dTSim, ’Tree Sim’ );

TreeSim.m

Run the simulation. The angular momentum is computed for informational purposes only.

Listing 8.13: Tree Simulation: The simulation loop. TreeSim.m

% Run the simulation
%-------------------
for k = 1:nSim

% Display the status message
%---------------------------
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[ ratioRealTime, tToGoMem ] = TimeGUI( nSim, k, tToGoMem, ratioRealTime, dTSim );
% Save for plotting
%------------------
hPlot(k) = Mag( TreeH( x, t, treeDS, body ) );
xPlot(:,k) = x;
tPlot(k) = t;

% Update the equations of motion
%-------------------------------
x = RK4( ’Tree’, x, dTSim, t, treeDS, body );
t = t + dTSim;

% Time control
%-------------
switch simulationAction
case ’pause’

pause
simulationAction = ’ ’;

case ’stop’
return;

case ’plot’
break;

end
end

TreeSim.m

Plot the results.

Listing 8.14: Tree Simulation: Plotting. TreeSim.m

TreePlot( tPlot, xPlot, treeDS, body, hPlot )

TreeSim.m

An example plot is shown in Figure 8.4.

Figure 8.4: Tree Simulation: One of several plots.
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CHAPTER 9

PLANETARY AND SUN EPHEMERIS

9.1 Overview

The Ephem directory provides functions for time-dependent information such as finding planet, moon, and sun loca-
tions; coordinate frame transformations; time transformations; solstice, equinox, and eclipses. There also utilities for
drawing ground tracks, finding Lagrange points, and computing parallax. Functions for attitude frames related to the
sun vector are also found here, such as sun-nadir and sun-pointing. Type help Ephem for a full listing.

There are demos for finding Earth nutation, precession, and rotation (TEarth); eclipses (TEclipse); and the sim-
plified planets model (TPlanets).

The most recent additions to the toolbox ephemeris capability include an interface to the JPL ephemerides and func-
tions more suited to use in interplanetary orbits, such as SunVectorECI in addition to SunV1 and SunV2.

9.2 Almanac functions

The toolbox has a variety of almanac functions for obtaining the ephemeris of the planets1, moon, and sun. For
example, the following functions are available in Ephem:

• MoonV1 2

• MoonV2 3

• PlanetPosition

• SolarSys

• SunV1 4

• SunV2 5

1Explanatory Supplement to the Astronomical Almanac (1992.) Table 5.8.1. p. 316.
2The 1993 Astronomical Almanac, p. D46.
3Montenbruck, O., Pfleger, T., Astronomy on the Personal Computer, Springer-Verlag, Berlin, 1991, pp. 103-111.
4 The 1993 Astronomical Almanac, p. C24.
5Montenbruck and Pfleger, p. 36.
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9.3 JPL Ephemeris

The toolbox has the capability to use a JPL ephemeris file such as the DE405 set within the Toolbox. The functions
PlanetPosJPL and SolarSysJPL provide equivalence to PlanetPosition and SolarSys.

NASA’s Jet Propulsion Laboratory (JPL) freely provides these ASCII Lunar and Planetary Ephemerides which can be
downloaded from its website at the ftp site at ftp://ssd.jpl.nasa.gov/pub/eph/export with help at
http://ssd.jpl.nasa.gov/?planet eph export. The functions used in the toolbox for the purpose of reading and interpo-
lating these JPL ephemeris files are based on a C implementation by David Hoffman (Johnson Space Center) available
on the ftp site. They generate state data (position and velocity) for the sun, earth’s moon and the 9 major planets.
The MATLAB functions require binary versions of the ephemeris which are system-dependent and therefore must be
created by users.

9.3.1 Creating and managing binary files of the JPL ephemerides

Users will first need to compile binary versions of the ASCII files on their own system. This can be done with any
of a number of tools available from the website. The ASCII files are available in 20 year units, i.e. ASCP2000.405,
ASCP2020.405. The conversion also needs the header file HEADERPO.405. If you compile Hoffman’s C utility on
your computer, you could, for example, do

$ ./convert header.405 ascp2000.405 bin2000.405

Writing record: 25
Writing record: 50
Writing record: 75
Writing record: 100
Writing record: 125
Writing record: 150
Writing record: 175
Writing record: 200
Writing record: 225

Data Conversion Completed.

Records Converted: 230
Records Rejected: 0

and similarly create a file for bin2020.405. To verify the files, you can use print header and scan records.

$ ./print_header bin2020.405

GROUP 1010

JPL Planetary Ephemeris DE405/DE405
Start Epoch: JED= 2305424.5 1599 DEC 09 00:00:00

Final Epoch: JED= 2525008.5 2201 FEB 20
00:00:00

GROUP 1030

2305424.50 2525008.50 32.00

GROUP 1040

156
DENUM LENUM TDATEF TDATEB CENTER CLIGHT AU EMRAT GM1 GM2
GMB GM4 GM5 GM6 GM7 GM8 GM9 GMS RAD1 RAD2
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RAD4 JDEPOC X1 Y1 Z1 XD1 YD1 ZD1 X2 Y2
Z2 XD2 YD2 ZD2 XB YB ZB XDB YDB ZDB
X4 Y4 Z4 XD4 YD4 ZD4 X5 Y5 Z5 XD5
YD5 ZD5 X6 Y6 Z6 XD6 YD6 ZD6 X7 Y7
Z7 XD7 YD7 ZD7 X8 Y8 Z8 XD8 YD8 ZD8
X9 Y9 Z9 XD9 YD9 ZD9 XM YM ZM XDM
YDM ZDM XS YS ZS XDS YDS ZDS BETA GAMMA
J2SUN GDOT MA0001 MA0002 MA0004 MAD1 MAD2 MAD3 RE ASUN
PHI THT PSI OMEGAX OMEGAY OMEGAZ AM J2M J3M J4M
C22M C31M C32M C33M S31M S32M S33M C41M C42M C43M
C44M S41M S42M S43M S44M LBET LGAM K2M TAUM AE
J2E J3E J4E K2E0 K2E1 K2E2 TAUE0 TAUE1 TAUE2 DROTEX
DROTEY GMAST1 GMAST2 GMAST3 KVC IFAC PHIC THTC PSIC OMGCX
OMGCY OMGCZ PSIDOT MGMIS ROTEX ROTEY

$ ./scan_records bin2000.405

Record Start Stop
-----------------------------------

1 2451536.50 2451568.50
2 2451568.50 2451600.50
...

230 2458832.50 2458864.50

You can concatenate the files using append. In this case, the data from the second binary file is added to the first.
When you scan the records of the combined file the number is increased from 230 to 458. There is also a function to
enable you to extract records from binary files to create a custom time interval.

$ mv bin2000.405 binEphem.405
$ ./append binEphem.405 bin2020.40
$ ./scan_records binEphem.405

Record Start Stop
-----------------------------------

1 2451536.50 2451568.50
2 2451568.50 2451600.50
...

458 2466128.50 2466160.50

9.3.2 The InterpolateState function

The function which directly interfaces with the JPL ephemeris files is InterpolateState. This function returns
the state of a single body at a specific Julian Date. The state is measured from the solar system barycenter and in the
mean Earth equator frame. The function call is

[X, GM] = InterpolateState( Target, Time, fileName )

The numbering convention for the Target bodies is given in table Table 9.1 on the next page: Additional compu-
tations are required to obtain planet states referenced from the sun, or to obtain the heliocentric positions of the Earth
and moon.

9.3.3 JPL Ephemeris Demos

The function InterpolateState has its own built-in demo. Recall that this state is measured from the solar
system barycenter and is in the Earth equatorial frame.

State for Mercury on Jan 1, 2001
2.454786013744712e+07
-5.399651407895338e+07
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Table 9.1: Target Numbering Convention

Number Bodies
1 Mercury
2 Venus
3 Earth-Moon Barycenter
4 Mars
5 Jupiter
6 Saturn
7 Uranus
8 Neptune
9 Pluto
10 Geocentric Moon
11 Sun

-3.136647347180613e+07
3.530110141765838e+01
1.987507976959802e+01
6.957125863787630e+00

PlanetPosJPL and SolarSysJPL also have built-in demos. These functions compute the planet states from the
sun’s geometric position and allow for output in the ecliptic frame. SolarSysJPLwill create a plot of the trajectories
of the first five planets in the ecliptic frame.

Figure 9.1: Planet trajectories as generated by the built-in demo of SolarSysJPL
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The demo PlanetDemo demonstrates both SolarSysJPL and PlanetPosJPL. The demo tests that the planet
positions from both functions match by overlaying the output. The geocentric moon state is also plotted.
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CHAPTER 10

PLOTTING TOOL

This chapter explains how to use the Plotting Tool to display the results of your multiple body simulations.

10.1 Introduction

The Plotting Tool is a graphical user interface which enables convenient and customized viewing of simulation data.
The tool supports data generated by either MATLAB or external simulations, and allows users to configure the way in
which they view and analyze the data.

There are two types of files which may be loaded into the plotting tool:

• Simulation Output Files: These files contain raw data from a simulation, consisting of the time history of several
different variables. * Note that these files are treated as “Read-Only” they are never modified while using the
tool.

• Template Files: These are .mat files which contain user preferences. Each template file acts as a filter to the
simulation data. They affect how the variables are displayed and plotted, and how new data is derived.

In addition to loading in a data file, you may load in data directly from the MATLAB workspace.

While using the Plotting Tool, you have several options available to you for configuring how the data is displayed. You
may group variables, exclude variables from the display, develop methods for deriving new data, create time history
figures, and perform 3-dimensional animations. At any point, these settings may be saved to a template file.

The key feature of the Plotting Tool is that is flexible. Any number of template files may be created and applied to any
set of simulation data. The files are organized in the Plotting module.

> help Plotting
PSS Toolbox Folder Plotting
Version 2019.1 23-Dec-2019

Directories:
Demos
Demos/GUI
Derivation Functions
GUI
Parametric
Sim Results
Templates
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Utilities

The remainder of this chapter describes how to use the Plotting Tool, and discusses the various features that you may
find useful.

10.2 Getting Started

To open the GUI, type PlottingTool at the MATLAB prompt.

>> PlottingTool

To begin using the tool, you must first load in data. Data can be loaded in from a file or directly from the MATLAB
workspace. In this example we will load a data file. Click on the Data File menu, located at the top of the GUI in
the menu bar, and select the Load option from the drop-down menu that appears. The Save As and Close options are
initially inactive, since no data file has yet been loaded. As an alternative to using the GUI menubar, you may use the
shortcut CTRL+L to load data files.

You will be prompted to select a data file. The first Sim Results folder found in your MATLAB path is the default loca-
tion used in the browser window. Choose the example data file included with the build, SimOut-MatlabRecon.mat.

The simulation data consists of three spacecraft, each with 25 single-dimensional time-history variables. The duration
of the simulation is 900 seconds, with a fixed 5 second time-step. A snapshot of the GUI as it should appear after
loading the data file is provided below.

Figure 10.1: Plotting Tool GUI with Newly Loaded Data File

At this point, one simulation data file has been loaded. You may load as many data files into the tool as you wish,
however only one data file is displayed at a time. A pull-down menu located in the top-center portion of the GUI
allows you to choose which data file to display.
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From this point, you may begin working with the tool. Several options are available to you, including:

• Grouping and organizing variables

• Selecting which variables should be displayed to the screen

• Generating time-history plots

• Animating 3-dimensional variables

• Deriving new data from the raw data

• Applying predefined templates to perform any of the above actions automatically

The remainder of this document explains how to use these various features.

10.3 GUI Layout and Features

This section will describe the general layout and features of the Plotting Tool. The diagram in Figure 11-2 illustrates
the layout of the GUI.

Figure 10.2: Diagram of the Plotting Tool GUI
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10.3.1 Data File Pull-Down Menu

Multiple data files may be loaded into the Plotting Tool. Only one data file is displayed at any time, though. This
pull-down menu allows you to select one of the loaded data files to be displayed.

Below the data file pull-down menu is the Template file display. Only one template may be applied at any time.

10.3.2 Object Pull-Down Menu

The Plotting Tool is designed to conveniently display the simulation results involving multiple objects, i.e. multiple
spacecraft or aircraft. The variables associated with each object are displayed within the GUI. Only one object may be
displayed at once. This pull-down menu allows you to toggle between the objects.

10.3.3 Variable List

This window displays the filtered list of variables associated with the currently selected object and data file. If no
template has been applied, then the original set of variables contained in the data file is displayed. When a template is
applied, the set of displayed variables may change from the original set. This is part of the display filtering that occurs
when applying a template to the raw data.

The list of variables displayed to the screen is built-up as follows:

1. Begin with the original list of variables from the raw simulation data

2. Add all derived variables

3. Add all variable groups

4. Exclude all those variables contained in the exclusion list

The grouping, exclusion, and derivation of variables may be conducted using separate GUI’s, as described in Sections
10.7, 10.5, and 10.6.

10.3.4 Variable Information & Time-History

Any variable in the list may be selected to display its time history and general information. The general information
includes the vector size, units, time duration, time-step, minimum and maximum value. The units are only displayed
if they are supplied in the data file.

10.3.5 Figure Editing

The right-hand side of the GUI is used for generating time-history figures. Figures may be created, modified, and
deleted. Multiple variables of multiple objects may be included in each figure. In addition, the objects and variables
may be organized within the figure by row, column and line-color. More details are presented in Section 10.4 on the
facing page.

10.3.6 3-D Variable Animation

A center portion of the GUI is used for setting up the animation of 3-dimensional variables. Animation is discussed in
detail in Section 10.8 on page 98.
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10.3.7 Action Buttons

Five action buttons are provided at the bottom of the GUI. The first three buttons bring up new GUI’s:

• Grouping Brings up the Group Variables GUI

• Exclusion Brings up the Variable Exclusion GUI

• Derivation Brings up the Data Derivation GUI

The remaining two buttons are titled Export and Derive Now. The Export button will export all of the variables asso-
ciated with the currently selected data file to MATLAB workspace. If multiple objects are loaded, the variable names
are appended with “ 1”, “ 2”, etc. The Derive Now button will cause all of the derived variables to be recomputed.

In addition to these 5 action buttons, a Help button and a Quit button are located at the bottom righthand side of the
GUI.

10.3.8 Plotting Tool Menubar

A set of menu controls specific to the Plotting Tool are provided in the menubar of the figure. The menus include Data
File, Template and Actions. From the Data File menu, you can load and close data files, and save them as new .mat
files with a plotting tool format. From the Template menu, you can apply, save or remove a template file. The Actions
menu contains links to the Derivation, Exclusion and Grouping GUI’s, and includes additional options to export the
data to the workspace, recompute the derived variables, or quit the current session.

10.3.9 Shortcuts

Several of the buttons or menu items in the Plotting Tool have shortcut keys. The following table lists all of the
shortcuts.

Table 10.1: Shortcut Keys for the Plotting Tool

Action Shortcut (PC) Shortcut (Mac)
Load Data File CTRL + L CMD + L
Close Data File CTRL + X CMD + X
Apply Template CTRL + A CMD + A
Save Template CTRL + T CMD + T
Remove Template CTRL + R CMD + R
Export Data to Workspace CTRL + E CMD + E
Derive Data CTRL + D CMD + D
Quit CTRL + Q CMD + Q

10.4 Creating Figures

The right hand side of the GUI is used for generating figures. First, click the New Figure button and pick a name for
the new figure. You can choose the variables and satellites you wish to plot from the checkbox lists, and indicate how
they are distinguished with the pull-down menus under the words, Plot By.

In general, the data has three descriptive components to it: variable, satellite, and element. A given variable may have
one or multiple elements, and a unique copy of each variable exists for each satellite. For a given figure, the user may
choose which variables and which satellites to include in the plot. The user may also define the manner in which these
three components are organized within the figure.
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Each component may be assigned one of the following four plotting characteristics: row, column, color, and linestyle.
Organizing by row or column causes separate sub-plots to be created within the figure, while the color and linestyle
attributes distinguish the components within a single plot.

Figure 10.3 provides an example of the type of figures that can be quickly generated with the Plotting Tool. It shows
the relative position and velocity of three spacecraft. The x, y, and z elements are separated by row, the r Hills and v
Hills variables separated by column, and the satellites distinguished by linestyle. The figure could be easily generated
again in several different formats. For each figure created, the title, variables, satellites and all plotting characteristics
are stored in the template.

Figure 10.3: Plotting Tool Generated Figure

The two variables plotted in this figure were not included in the simulation output - they were derived automatically
upon applying a template. In this case, a derivation function was used which takes the position and velocity of the
satellites in the ECI frame as inputs, performs a coordinate transformation, and returns the relative states in the local
Hills frame. The exact process involved with creating these variables is discussed in further detail in Section 10.7.

10.5 Grouping Variables

It is often useful to work with a vector of data rather than the individual elements. The plotting tool allows you to
group individual variables together.

By pressing the Grouping button at the bottom of the Plotting Tool, a new Group Variables GUI will open up. This
GUI may also be opened from the Actions menu. Within the Group Variables GUI, you may press the New Group
button to create a new variable group. Once a group has been created, you may scroll through the checkbox list of
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simulation elements to assign variables to the group. Groups may always be edited, renamed, or deleted.

If any groups have been created, modified or deleted, the variable display in the Plotting Tool will be updated accord-
ingly only after the Group Variables GUI is closed.

As an example, load the “SimOutMatlabRecon.mat” data file. Create two groups, “r ECI” and “v ECI”. Add the
following variables to the “r ECI” group: Orbit:x ECI, Orbit:y ECI, Orbit:z ECI. Similarly, add the following variables
to the “v ECI” group: Orbit:vX ECI, Orbit:vY ECI, Orbit:vZ ECI. Press the Exit button, and scroll to the bottom of
the variable display in the Plotting Tool to view the new groups.

10.6 Excluding Variables

It is often the case where several types of telemetry is collected, but only a select few are of interest most of the time.
Or in some cases, redundant sets of data are stored, and it is usually only necessary to view a unique set. The Plotting
Tool allows you to exclude any variables from the display that you do not wish to see.

Press the Exclusion button at the of the Plotting Tool to pull up the Display Filter GUI. Simply select those variables
that you do not wish to be displayed, then press the Exit button.

10.7 Deriving New Data

An often repetitive task involved with analyzing raw data is deriving new, meaningful data from it. One of the aims of
this tool is to make the process of creating and viewing derived data more automatic and therefore less time-consuming.
Press the Derivation button at the bottom of the Plotting Tool to bring up the Data Derivation GUI.

The Data Derivation GUI is set up such that you can choose new outputs to be created from the raw simulation
data. Each new output is created with a Derivation Function, which is supplied with your choice of inputs. The
steps below provide an example of how to derive new data. In order to follow along with the steps, first load the
SimOutMatlabRecon.mat data file and refer to Section 10.5 for an explanation of how to create the “r ECI” and
“v ECI” groups.

The steps for deriving new data are summarized as follows:

1. Choose a name for the output. For example, derive the relative position vector in the Hills frame, “r Hills”, from
the ECI position and velocity data.

2. Choose a function with which to create the output. In this case, the function to use is TransformECI2Hills.m.

3. Choose the inputs for your function. The function TransformECI2Hills.m requires 2 inputs: the position
in the ECI frame, “r ECI”, and the velocity, “v ECI”.

Press the New Output button and name your new output “r Hills”. The default function assigned to new outputs is
DerivationTemplate. Change the function to TransformECI2Hills.

Now, select the inputs. Choose the following 2 groups: “r ECI” and “v ECI”. Each input passed into the derivation
functions includes the data for all satellites. Press the Exit button to return to the Plotting Tool.

If changes have been made to your derivation settings, all of your derived outputs will automatically be recalculated
upon exiting the derivation window. In addition, you may re-derive data at any time by pressing the Derive Now button
on the bottom of the main Plotting Tool GUI.

When you exit from the Data Derivation GUI, the derivation functions are called for all outputs that you have created,
and the derived data is stored in the PlottingTool GUI. If you have assigned the wrong number of inputs to a function,
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or have supplied inputs of an improper size, a dialogue box will be displayed indicating the error. If there is an error
inside the function itself, the GUI can be closed once the error has been fixed.

Take a closer look at the TransformECI2Hills.m function to see how the ECI states are converted to the Hills
frame. Several options are available from within the function itself which dictate how the new data is calculated. In
the future, any options associated with derivation functions will be made available from within the Derive Data GUI.

10.8 Animation

The Plotting Tool also allows you to set up animations of any three-dimensional variables. Any group having three
elements is displayed in the list of variables in the animation section of the main GUI.

One of the key applications of the 3-D animation feature is viewing the relative motion of satellites in a local reference
frame. In formation flying, the objective is to control the relative position and velocity of the satellites such that a
particular shape or configuration is maintained. The manner in which these relative states evolve over time can be
viewed nicely through animation.

While it is perhaps most intuitive to view 3-dimensional variables representing spatial coordinates (such as the satel-
lites’ relative positions), the tool can be used to animate any 3-dimensional variable. The potential therefore exists for
users to gain new insights into their data by experimenting with this feature.

First, select one of the three-dimensional variables. This might be a measured position, for example. If there exists
another 3-D variable that represents the desired value, then it may be chosen as the target. Next, choose which of the
objects you wish to animate. You may also choose the time window that is animated by changing the start and stop
times.

Push the Animate in 3D button to open the AnimationGUI. Figure 10.4 on the next page provides a snapshot of the
Animation GUI generated with the relative Hills position derived from the SimOutMatlabRecon.mat data file.

10.9 Templates

Once a data file is loaded into the Plotting Tool, the user may manipulate the data in a number of different ways.
Variables may be grouped or excluded, new variables derived, and figures generated. All of these settings may be
saved to a template file. The template may be edited over time, and applied to other simulation files.

Templates are stored as .mat files. As you make changes to the display, add figures or derive new variables, you can
continue to save the template. Go to the Templates menu, select the Save option, and the old file will be overwritten.
Otherwise, you may choose the Save As option and save the template under a different name.

As an example, load the SimOutMatlabRecon.mat data file and apply the FF Matlab.mat template to it. First,
go to the Data File menu and select Load, or just type CTRL+L. Select and open the SimOutMatlabRecon.mat
data file. The next step is to apply a plotting template to this raw data. Go to the Template menu, located at the top of
the GUI in the menubar, and select the Apply option. Alternatively, use the shortcut CTRL+A.

You will now be prompted to select a template file. The first “Templates” folder found in your MATLAB path is used
as the default folder in the browser window. Choose the FF Matlab.mat template file that was included with the
build. The template is now applied to the data file in the Plotting Tool.
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Figure 10.4: Animation GUI Snap-Shot

10.10 Plotting Output from Custom Simulation Software

The Plotting Tool is capable of plotting output formats generated by certain MATLAB simulations or output log files
generated by any external application. This section describes how to read a custom output file into the Plotting Tool.
This requires the user to write an m-file to read in the data. An alternative approach is to use the standard PSS
simulation output file format. The next two subsections describe these alternatives. Users who do not have need of
this advanced functionality can skip the rest of this section.

Princeton Satellite Systems has developed a C++ based simulation tool called DSim, which outputs data files into
the proper format for the Plotting Tool. The ability to run custom simulations outside of MATLAB and then use
MATLAB’s graphical analysis capabilities to analyze simulation results has proven extremely valuable.

10.10.1 Reading a Custom Output File

The Plotting Tool is designed to make it easy for users to read in their own custom output files. There are three
steps to this process: creating the output file, creating a custom m-file to read the output file, and modifying the
PlottingTool.m file.

Creating a Custom Output File

The output file must be of a format that MATLAB can read and text files are probably the easiest to deal with. A
number of c-type functions are available within MATLAB to read and parse text files. It is advised that the output file
be a text file delimited by either spaces or commas. The remainder of this section assumes the output is a text file.

The only requirement for creating the output file is that the first line contains a description of the type of output. For
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example, the first line of each DSim output ends with the string “Simulation Output”. The entire line is a description
of the type of simulation that was run, for example: “Formation Flying Simulation Output”. This first line descriptor
is used in the PlottingTool.m file to determine how to read the rest of the output file.

Aside from that requirement, you can format the file in any fashion you desire. It is strongly encouraged that the file
contain not only the raw data but also the time associated with the data and the variable names of each of the data
elements. Optional information that can be included in the file is described in the next subsection.

Creating an M-File for Reading in a Custom Output File

Once you’ve created an output file, you must create an m-file that reads it into the Plotting Tool. This function call
should have the following format

d = ReadCustomFile( fId, any other necessary parameters );

where d is an output data structure whose fields are defined in Table 10.2, ‘ReadCustomFile’ is the name of the
m-file, ‘fId’ is the MATLAB file identifier for the output file, and ‘any other necessary parameters’ is a list of any
additional information that must be passed to the m-file that reads your output. For example, the default file reader,
ReadOutputFile.m, is passed the name of the output file for use in error messages that are generated if it encoun-
ters problems reading the file.

Table 10.2 shows the possible fields of the data structure d. The only field that must exist is ‘data’ although it is
strongly recommended that the ‘dataNames’ and ‘time’ fields also be included. The remaining fields enable you to
provide more information about the data as well as control how some of the information is displayed.

Table 10.2: Fields of Output Data Structure d

Field Format Description
data {1 x nObjects} cell array with each cell

containing a (nD x nT) matrix of raw
data

Each cell contains the data for a specific spacecraft. The
matrix of raw data has one row for each data element and
one column for each time point. These data elements can be
grouped in the ‘groups’ field or by using the Plotting Tool
after reading in the data.

dataNames {1 x nD} cell array of strings Each string is the name of the corresponding data element. If
this field doesn’t exist, the elements are named ‘el 1’, ‘el 2’,
etc.

dataUnits {1 x nD} cell array of strings Each string describes the units of the corresponding data el-
ement. Optional.

excluded {1 x n} cell array of strings Each string is the dataName of an element that is not to be
displayed in the variable list. Optional.

groups (:) array of data structures with fields
‘name’ and ‘elements’

Each element is a data structure corresponding to a new
grouping of individual data elements. The ’name’ field is
the name of the group as a string. The ’elements’ field is a
cell array of strings that contains the dataName of each data
element that is to be included in the group. Optional.

jDEpoch scalar Simulation start time as Julian date. Optional.
objNames {1 x nObjects} cell array of strings Each string is the name of the corresponding object. If this

field doesn’t exist, the objects are named ‘Obj 1’, ‘Obj 2’,
etc.

time (1 x nT) Row vector of elapsed simulation time in seconds. If this
field doesn’t exist, it is assumed the time step is one second.

How the output data structure d is assembled from the raw data in the output file is up to you. Any of the built-in
MATLAB functions for file and string manipulation can be used and you are free to write your own functions to
massage your data into the appropriate format. As an example of how to read a text file and generate the appropriate
output data structure, see the ReadOutputFile.m file.
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Modifying the PlottingTool.m File

Once you have created the m-file for reading your data, you must modify the PlottingTool.m file to recognize
this output file type. In the member function “LoadSimData” (which is in the PlottingTool.m file), locate the
following comment lines:

% User can add additional output file types here using
% elseif( strcmp( line1, ’first_line_in_file_string’ ) )

After these comment lines, add two lines of the following form:

elseif( strcmp( line1, ’first_line_in_output_file’ ) )
d = ReadCustomFile( fId, any_other_necessary_parameters );

where first line in output file is the unique descriptor you’ve chosen for the first line of the output file.
As an alternative to using MATLAB’s strcmp function, which compares the entirety of both strings, you may want
to use the findstr function, which looks for the occurrence of the string ’first line in output file’ within
line1. The second line is the function call to the m-file you created. Provided that your m-file outputs a data structure
d with the appropriate fields, you should now be able to use your custom output file with the Plotting Tool.

10.10.2 Using the PSS Simulation Output Format

An alternative to creating your own output file format is to use the format described here. If you follow this format,
the Plotting Tool will automatically be able to read your output file. The Spacecraft Control Toolbox comes with a
sample simulation output file that is in the format described here. It is called “SampleSimOutput.txt” and is located in
the /Common/CommonData/ folder. It can be loaded into the Plotting Tool with the following command:

>> PlottingTool( ’load sim data’, ’SampleSimOutput.txt’ );

The file format can be most easily understood by viewing the contents of this file in an editor. The first five lines are
shown here for reference. The entire fifth line is too long to fit so only the first part is shown.

Listing 10.1: Example Format for Simulation Output Text File SampleSimOutput.txt

1 Small Agile Satellite Simulation Output
2 Epoch 2.452994833e+06
3 nObjects 1
4 Target
5 // time (secs) [1] // rECI1 (km) [3] {x, y, z} // vECI1 (km/s) [3] {xDot, yDot, zDot} . . .

SampleSimOutput.txt

The first line of the output file must contain the string ‘Simulation Output’. This must be included in the first line of
your output file if the Plotting Tool is going to recognize the file type correctly.

The second line is optional and provides the start time of the simulation as a Julian date. The line format is the word
‘Epoch’ (or ‘epoch’) followed by a space followed by the Julian date.

The third line specifies the number of objects in the simulation. This is required. The format is ‘nObjects’ followed
by a space followed by an integer.

The fourth line provides the name of the object. In this case we have only one object, so the name is given on one line.
For multiple objects, the name should be provided (in order) on separate lines. Each line is read as the name of a new
object so you can use whatever characters you’d like in the name.

The fifth line specifies the names of the various data elements, their units, etc. This line is required. Following this
line is the raw data. Let’s look at how to format the raw data first and then come back to the element names line.

The raw data is a matrix with each element separated by spaces. Each column is a different output element and each
row is a different timestep. The matrix is arranged such that all the outputs from one object are grouped together.
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Hence, all outputs of the first object are listed first by column, followed by the columns of the outputs of the second
object, etc.

Each object must have the same number and type of outputs. For example, either all objects have the output ‘x’ or
none of the spacecraft have output ‘x’. Furthermore, the order of the output columns for each object is the same. i.e.
If the first object’s outputs are ‘x’ then ‘y’ then ‘z’, then all objects have the ‘x’ output column followed by the ‘y’
column followed by the ‘z’ column.

Finally, the first column of the raw data corresponds to the simulation time in seconds. This time is the same across
all object output columns.

Given these constraints, if there were three spacecraft each with 12 output elements, there would be a total of 37
output columns. The first column is the time, the next 12 columns are the outputs of the first spacecraft, and these are
followed by 12 columns for the second spacecraft and 12 columns for the third spacecraft.

Now back to the header line that provides the name information about each output. There are a number of ways to
format this line but the general format is

// outputName (units) [number of elements] {elName1, elName2, ...}
// outputName ... //

where ‘//’ separates different variables, optional parentheses ( ‘(’ and ‘)’ ) are used to specify units, optional square
brackets ( ‘[’ and ‘]’ ) are used to specify the number of elements contained in that variable, and optional braces ( ‘’
and ‘’ ) are used to specify the names of the individual elements.

The line must start and end with ‘//’. After that, there are a number of options. The simplest method is to provide the
name of each element of data. The format would be

// el1Name // el2Name // el3Name // ... //

In general, it is necessary to define this line for only one spacecraft. The Plotting Tool only supports multiple objects
if all objects have an identical set of outputs. The ReadOutputFile.m function uses only the first set of outputs
in the line to define the variable list. It first counts the total number of variables in the line, and assigns the value to
nVar. Next, it modifies the value of nVar as follows:

nVar = 1 + (nVar-1)/nObjects;

If you wish to supply only one list of variable names that applies to all objects, then you would omit this line. Accord-
ing to the example above, you would specify thirteen element names (the first would be ‘time’ followed by the names
of the 12 output columns for each spacecraft.)

If you wish to include units, the format would be

// el1Name (units) // el2Name // el3Name (units) // ... //

It is not necessary to specify the units for each element. Some elements can be unitless. The square brackets and braces
are used if you wish to group individual elements into larger variables (such as individual ‘x’, ‘y’, and ‘z’ coordinates
into ‘rECI’.) This is equivalent to using the Plotting Tool to group variables together and the Display Filter to exclude
the individual elements from the variable list.

The square bracket specifies how many columns are associated with that variable name. For example

// time // rECI (km) [3] // vECI [3] (km/s) //

would group the second through fourth columns into the variable ‘rECI’ and the fifth through seventh columns into
‘vECI’. These grouped variable names would appear in the Plotting Tool variable list instead of the individual element
names. Also note that the order of the optional parameters is not important.
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The braces allow you to name the individual elements of the grouped variable. If you don’t provide names, the Plotting
Tool will automatically append numerals to the group name to come up with the individual element names. i.e. In the
example above, the group ‘rECI’ would have individual elements ‘rECI 1’, ‘rECI 2’, and ‘rECI 3’. Using the format

// time // rECI (km) [3] x, y, z // ... //

would cause the individual elements to be named ‘rECI x’, ‘rECI y’, ‘rECI z’. The common ‘rECI ’ will not appear
in any plots.

The preceding example would cause the variable list in the Plotting Tool to display ‘time’, ‘rECI’, and ‘vECI’ and
exclude ‘rECI x’, ‘rECI y’, etc.

You can use the sample simulation output file to see how to format your own output file.

10.11 Summary

The Plotting Tool is a MATLAB GUI designed to display the results of raw simulation data in a useful way. The
purpose of this tool is to provide users with the ability to quickly, conveniently, and consistently analyze the results of
their simulation. If you find that you repeatedly view the same types of plots or derive the same types of data, then
the Plotting Tool can help to automate these tasks by storing your settings in template files. The output files of both
MATLAB and external simulations may be loaded in to the GUI, while different templates are applied to change how
the data is displayed. The result is a flexible, user-configurable method for post simulation analysis.
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CHAPTER 11

POINTING BUDGETS

This chapter discusses how to generate a pointing budget.

11.1 Pointing Budget

PBudget, in the Attitude folder of SC, generates antenna beam pointing budgets. Its inputs are a n-by-3 matrix of
error contributions, an n-by-m matrix of categories, an n-by-m matrix of descriptions, and a 2-by-1 matrix of antenna
offsets. For the category and description matrices m signifies the length of the longest string.

Listing 11.1: PBudget Example
errors = [0.01 0.02 0.03;...

0.02 0.04 0.01;...
0.04 0.03 0.05;...
0.05 0.00 0.06]; % degrees

categ = ’Bias’;
categ = str2mat(categ,’Bias’);
categ = str2mat(categ,’Diurnal’);
categ = str2mat(categ,’Diurnal’);
desc = ’Thermal’;
desc = str2mat(desc,’Misalignments’);
desc = str2mat(desc,’Thermal’);
desc = str2mat(desc,’Misalignments’);
aZ = 0.0;
eL = 0.0;
[cep,r,s,t] = PBudget(errors,categ,desc,aZ,eL,’MyBudget.txt’);

PBudget always adds categories and combines errors within categories by taking the square root of the sum of the
squares. You can have as many categories as you wish. The descriptions have no effect on the computations. The
outputs are the 3-sigma circular error, the azimuth and elevation beam pointing errors, the category totals and the
totals. The 3-sigma error is the angular error that there is a 0.99865 probability that the beam center is within. If the
last input is given, PBudget will create a pointing budget file called MyBudget.txt.

The circular error is computed by numerically integrating the two-dimensional probability density function for azimuth
and elevation. The MATLAB quad routine is used to perform the inner integration. A bisection search is used to find
the value of angular radius with that marks the 3-sigma boundary. A complete pointing budget is given in the script
ExamplePointingBudget.

Listing 11.2: Pointing budget example output MyBudget.txt
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Pointing budget 10-Aug-2007

Thermal
1 Bias 0.0100 0.0200 0.0300 deg
2 Diurnal 0.0400 0.0300 0.0500 deg
----------------------------------------------------------------------------

Subtotal 0.0412 0.0361 0.0583 deg

Misalignments
3 Bias 0.0200 0.0400 0.0100 deg
4 Diurnal 0.0500 0.0000 0.0600 deg
----------------------------------------------------------------------------

Subtotal 0.0539 0.0400 0.0608 deg

----------------------------------------------------------------------------
Total 0.0951 0.0761 0.1191 deg

CEP = 0.1070 deg

MyBudget.txt

11.2 Pointing Budget GUI

The function PointingBudgetGUI creates a GUI for doing budgets. Figure 11.1 shows the GUI after it has been
opened. The File popup menu allows you to select existing pointing budget files or create a new file. The scrollable
window below it shows the budget. To the right is the area where you enter roll, pitch and yaw errors (in degrees)
and give the error a name. You can select one of four temporal categories using the popup menu. Use the Add button
to add the contribution and Remove to remove it. The scrollable area on the right shows the budget and the resulting
pointing error.

Only one methodology is available. The Azimuth and Elevation are of the beam center. Hit the Update button to
update the budget after you have entered new information.

Figure 11.1: Open the GUI

Figure 11.2 on the next page shows the GUI after the first error has been entered. The component appears in both
scrollable text windows. The right one also shows the resulting pointing error.

Figure 11.3 on the facing page shows the GUI after the second error has been entered.

Figure 11.4 on the next page shows save file dialog box.
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Figure 11.2: Entering the first error

Figure 11.3: Entering a second error

Figure 11.4: Save window
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CHAPTER 12

DESIGNING CONTROLLERS

This chapter shows how to design controllers using the ControlDesignGUI. The three major methodologies dis-
cussed are: Linear Quadratic, Eigenstructure Assignment, and Single-Input-Single-Output. This section focuses on
how to use the Control Designer GUI.

12.1 Using the block diagram

The block diagram from the control designer GUI is shown in the following figure.

Figure 12.1: Block diagram

When you select a block, all operations (including all of the simulation buttons, loading and saving), apply only to that
block. To work with the entire diagram click the highlighted block so that none are highlighted. The blue box opens
and closes the control loops. When it is blue (the default) the system is closed. To open the loops, click the box, and
it will turn white.

The red circles are inputs and the green are outputs. When you are working with the entire system you can select the
input and output points by clicking on the red and green circles. The red circle on the left is the command input, the
one on the top is the disturbance input and the one on the right is the noise input. The green output on the right is the
state output and the green output on the left is the measurement output.
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12.2 Linear Quadratic Control

In this example we will design a compensator for a double integrator using full-state feedback. A double integrator’s
states are position and velocity. For full-state feedback, both must be available.

This example is automated using LQFullState, shown below.

Listing 12.1: Linear Quadratic control design matrices and plant LQFullState.m

a = [0 1;0 0];
b = [0;1];
c = eye(2);
d = [0;0];

g = statespace( a, b, c, d, ’Double Integrator’,...
{’position’, ’velocity’}, ’force’, {’position’, ’velocity’} );

p = FindDirectory( ’CommonData’ );
save( fullfile(p,’DoubleIntegrator’), ’g’ );

q = eye(2);
r = 1;

w.q = q;
w.r = r;

gC = LQC( g, w, ’lq’ );
k = get( gC, ’d’ );

[a,b,c,d] = getabcd( g );
inputs = get( g, ’inputs’ );
inputs = strvcat( inputs, ’pitch rate’ );
g = set( g, a - b*k*c, ’a’ );
Step( g, 1, 0.1, 100 );

LQFullState.m

The script sets values for the controller design matrices. As you can see, you can also use LQC outside of the design
GUI. This script also creates the plant model, DoubleIntegrator.mat, and saves it to the directory Common-
Data. Run the script and you will get the plot in Figure 12.2 on the facing page.

12.3 Eigenstructure Assignment

Run the script CCVDemo. This script generates the inputs for the eigenstructure assignment example. The model is
already stored in CCVModel.mat.

Listing 12.2: Control configured vehicle example CCVDemo.m

% Plant matrix
%-------------
g = CCVModel;

% Desired eigenvalues and eigenvectors
%-------------------------------------
lambda = [ -5.6 + j*4.2; -5.6 - j*4.2; -1.0;...

-19.0; -19.5];
vD = [ 1-j 1+j 0 1 1;...

-1+j -1-j 1 0 0;...
0 0 0 0 0];

% We really want to decouple gamma
%---------------------------------
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Figure 12.2: Step response

States for Double Integrator

           
0

0.2

0.4

0.6

0.8

1

1.2

1.4

p
o

si
ti

o
n

          

0 1 2 3 4 5 6 7 8 9 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

ve
lo

ci
ty

Time (sec)

w = [ 1 1 1 1 1;...
1 1 1 1 1;...
100 100 1 1 1];

% The design matrix.
%----------------------------------------
d = [eye(3),zeros(3,2);... % Desired structure for eigenvector 1

eye(3),zeros(3,2);... % Desired structure for eigenvector 2
0 1 0 0 0;... % Desired structure for eigenvector 3
0 0 1 0 0;... %
0 0 0 1 0;... % Desired structure for eigenvector 4
0 0 0 0 1]; % Desired structure for eigenvector 5

% Rows in d per eigenvalue
% Each column is for one eigenvalue
% i.e. column one means that the first three rows of
% d relate to eigenvalue 1
%---------------------------------------------------
rD = [3,3,2,1,1];

% Compute the gain and the achieved eigenvectors
%-----------------------------------------------
[k, v] = EVAssgnC( g, lambda, vD, d, rD, w );

CCVDemo.m

lambda gives the desired eigenvalues, something that would be specified for simple pole placement. vD are the
desired eigenvectors which we can assign because we are using multi-input-multi-output control. The weighting
matrix shows how important each element of the desired eigenvector is to the control design. Notice that the length
of each eigenvector in vD is not the length of the state. This is because we don’t care about most of the eigenvector
values. The matrix d is used to related the desired eigenvector matrix to the actual states. rD indexes the rows in d
to the eigenvalues. One column per state. Each row relates vD to the plant matrix For example, rows 7 and 8 relate
column 3 in vD to the plant. In this case vD(1,3) relates to state 2 and vD(2,4) relates to state 3.

Now open ControlDesignPlugin. Click on the plan box and load CCVModel.mat. Now click on the Eigen-
structure tab and enter lambda, vD, d, rD and w into the corresponding spots. The GUI will look as shown in
Figure 12.3 on the next page.
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Figure 12.3: Eigenstructure design GUI

Push Create. Next push Step. You will see the plot in Figure 12.4.

Figure 12.4: Step response with eigenstructure assignment
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CHAPTER 13

CUBESAT

This chapter discusses how to use the CubeSat module. This module provides special system modules and mission
planning tools suitable for nanosatellite design.

The organization of the module can be seen by typing

>> help CubeSat

which returns a list of folders in the module. This includes Simulation, MissionPlanning, and Visualization, along
with corresponding Demos folders.

The CubeSat integrated simulation includes a simplified surface model for calculating disturbances. The toolbox
includes the following features:

• Integrated simulation model including

– Rigid body dynamics

– Reaction wheel gyrostat dynamics

– Point mass

– Scale height and Jacchia atmospheric models

– Magnetic dipole, drag, and optical force models

– Gravity gradient torques

– Solar cell power model including battery charging dynamics

• Three-axis attitude control using a PID

• Momentum unloading calculations

• Model attitude damping such as with magnetic hysteresis rods

• 2D and 3D visualization including

– Model visualization with surface normals

– 2D and 3D orbit plotting

– 3D attitude visualization

• Ephemeris

– Convert ECI to Earth-fixed using almanac models

– Sun vector
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– Moon vector

• Advanced orbit dynamics

– Spherical harmonic gravity model

– Relative orbit dynamics between two close satellites

• Observation time windows

• Subsystem models

– Link bit error probabilities

– Isothermal spacecraft model

– Cold gas propulsion

13.1 CubeSat Modeling

The CubeSat model is generated by CubeSatModel, in the Utilities folder. The default demo creates a 2U satellite.
The model is essentially a set of vertices and faces defining the exterior of the satellite. The function header is below
and the resulting model is in Figure 13.1 on the next page. This model has 152 faces.

>> help CubeSatModel
Generate vertices and faces for a CubeSat model.
If there are no outputs it will generate a plot with surface normals, or
you can draw the cubesat model using patch:

patch(’vertices’,v,’faces’,f,’facecolor’,[0.5 0.5 0.5]);

type can be ’3U’ or [3 2 1] i.e. a different dimension for x, y and z.

Type CubeSatModel for a demo of a 3U CubeSat.

This function will populate dRHS for use in RHSCubeSat. The surface
data for the cube faces will be 6 surfaces that are the dimensions of
the core spacecraft. Additional surfaces are added for the deployable
solar panels. Solar panels are grouped into wings that attached to the
edges of the CubeSat.

The function computes the inertia matrix, center of mass and total
mass. The mass properties of the interior components are computed from
total mass and center of mass.

If you set frameOnly to true (or 1), v and f will not contain the
walls. However, dRHS will contain all the wall properties.
--------------------------------------------------------------------------

Form:
d = CubeSatModel( ’struct’ )
[v, f] = CubeSatModel( type, t )
[v, f, dRHS] = CubeSatModel( type, d, frameOnly )
Demo:
CubeSatModel

--------------------------------------------------------------------------

------
Inputs
------
type (1,:) ’nU’ where n may be any number, or [x y z]
d (.) Data structure for the CubeSat

.thicknessWall (1,1) Wall thickness (mm)

.thicknessRail (1,1) Rail thickness (mm)

.densityWall (1,1) Density of the wall material (kg/m3)

.massComponents (1,1) Interior component mass (kg)
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.cMComponents (1,1) Interior components center of mass

.sigma (3,6) [absorbed; specular; diffuse]

.cD (1,6) Drag coefficient

.solarPanel.dim (3,1) [side attached to cubesat, side perpendicular,
thickness]

.solarPanel.nPanels (1,1) Number of panels per wing

.solarPanel.rPanel (3,w) Location of inner edge of panel

.solarPanel.sPanel (3,w) Direction of wing spine

.solarPanel.cellNormal (3,w) Wing cell normal

.solarPanel.sigmaCell (3,1) [absorbed; specular; diffuse] coefficients

.solarPanel.sigmaBack (3,1) [absorbed; specular; diffuse]

.solarPanel.mass (1,1) Panel mass
- OR -

t (1,1) Wall thickness (mm)
frameOnly (1,1) If true just draw the frame, optional

-------
Outputs
-------
v (:,3) Vertices
f (:,3) Faces
dRHS (1,1) Data structure for the function RHSCubeSat

--------------------------------------------------------------------------
Reference: CubeSat Design Specification (CDS) Revision 9

--------------------------------------------------------------------------

Figure 13.1: Model of 2U CubeSat

For the purposes of disturbance analysis, the CubeSat module uses a simplified model of areas and normals. See
CubeSatFaces. The CubeSatModel function will output a data structure with the surface model in addition to
the vertices and faces, which are strictly for visualization. This function does have the capability to model deployable
solar wings. The solar areas and normals for power generation are specified separately from the satellite surfaces, as
they may be only a portion of any given surface. See SolarCellPower for the power model.

The CubeSatRHS function documents the simulation data model. The function returns a data structure by default for
initializing simulations. The surface data from the CubeSatModel function is in the surfData and power fields.
The default data assumes no reaction wheels, as can be seen below since the kWheels field is empty. The atm data
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structure contains the atmosphere model data for use with AtmJ70. If this structure is empty, the simpler and faster
scale height model in AtmDens2 will be used instead.

>> d = RHSCubeSat
d =

struct with fields:

jD0: 2.4552e+06
mass: 1

inertia: 0.0016667
dipole: [3?1 double]
power: [1?1 struct]

surfData: [1?1 struct]
aeroModel: @CubeSatAero

opticalModel: @CubeSatRadiationPressure
atm: [1x1 struct]

kWheels: []
inertiaRWA: []

tRWA: []

Note in the above structure that the aerodynamics and optical force models are function handles. These functions are
designed to accept the surface model data structure within RHSCubeSat.

The key functions for modeling CubeSats are summarized in Table 13.1.

Table 13.1: CubeSat Modeling Functions

AddMass Combine component masses and calculate inertia and center-of-mass.
InertiaCubeSat Compute the inertia for standard CubeSat types.
CubeSatFaces Compute surface areas and normals for the faces of a CubeSat.
CubeSatModel Generate vertices and faces for a CubeSat model.
TubeSatModel Generate a TubeSat model.

13.2 Simulation

Example simulations are in the Demos/RelativeOrbit and Demos/Simulation folders. The first has a formation
flying demo, FFSimDemo. The second has a variety of simulations including an attitude control simulation demo,
CubeSatSimulation. CubeSatRWASimulation demonstrates a set of three orthgononal reaction wheels.
CubeSatGGStabilized shows how to set up the mass properties for a gravity-gradient boom.

Attitude control loops can be designed using the PIDMIMO function and implemented using PID3Axis. These are
included from the standard Spacecraft Control Toolbox.

The orbit simulations, TwoSpacecraftSimpleOrbitSimulation and TwoSpacecraftOrbitSimulation, sim-
ulate the same orbits, but the simple version uses just the central force model and the second adds a variety of distur-
bances. Both use MATLAB’s ode113 function for integration, so that integration occurs on a single line, without a
for loop. ode113 is a variable step propagator that may take very long steps for orbit sims. The integration line
looks like

% Numerically integrate the orbit
%--------------------------------
[t,x] = ode113( @FOrbitMultiSpacecraft, [0 tEnd], x, opt, d );

The default simulation length is 12 hours, and the simple sim results in 438 timesteps while the one with disturbances
computes 733 steps; Figure 13.2 on the next page compares the time output of the two examples, where we can see
that the simple simulation had mostly a constant step size. Figure 13.3 shows the typical orbit results.
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Figure 13.2: Orbit simulation timestep results, simple on the left with with disturbances on the right.
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Figure 13.3: Orbit evolution for an initial separation of 10 meters
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CubeSatSimulation simulates the attitude dynamics of the CubeSat in addition to a point-mass orbit and the
power subsystem. This simulation includes forces and torques from drag, radiation pressure, and an magnetic torque,
such as from a torquer control system. Since this simulation can include control, it steps through time discretely in a
for loop. RK4 is used for integration. In this case, the integration lines look like

for k = 1:nSim

% Control system placeholder - apply constant dipole
%---------------------------------------------------
d.dipole = [0.01;0;0]; % Amp-turns mˆ2

% A time step with 4th order Runge-Kutta
%---------------------------------------
x = RK4( @RHSCubeSat, x, dT, t, d );

% Update plotting and time
%-------------------------
xPlot(:,k+1) = x;
t = t + dT;

end

where the control, d.dipole, would be computed before the integration at every step for a fixed timestep (1 second).
See Figure 13.4 for sample results. The simulation takes about one minute of computation time per low-Earth orbit.

Figure 13.4: CubeSatSimulation example results
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The key functions used in simulations are summarized in Table 13.2. The space environment calculations from
CubeSatEnvironment are then passed to the force models in CubeSatAero and CubeSatRadiationPressure.
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Table 13.2: CubeSat Simulation Functions
RHSCubeSat Dynamics model including power and optional reaction wheels
CubeSatEnvironment Environment calculations for the CubeSat dynamical model.
CubeSatAero Aerodynamic model for a CubeSat.
CubeSatRadiationPressure Radiation pressure model for a CubeSat around the Earth.
CubeSatAttitude Attitude model with either ECI or LVLH reference
SolarCellPower Compute the power generated for a CubeSat.

RHSCubeSat also models battery charging if the batteryCapacity field of the power structure has been appro-
priately set. Power beyond the calculated consumption will be used to charge the battery until the capacity is reached.
The battery charge is always be the last element of the spacecraft state (after the states of any optional reaction wheels).

13.3 Mission Planning

The MissionPlanning folder provides several tools for planning a CubeSat mission. These include generating attitude
profiles and determining observation windows.

ObservationTimeWindows has a built-in demo which also demonstrates ObservationTimeWindowsPlot,
as shown in Figure 13.5. There are two ground targets, one in South America and one in France (large green dots).

Figure 13.5: Observation time windows
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The satellite is placed in a low Earth orbit, given a field of view of 180 degrees, and the windows are generated over a
7 hour horizon. The figure shows the field of view in magenta and the satellite trajectory segments when the target is
in the field of view are highlighted in yellow. This function can operate on a single Keplerian element set or a stored
trajectory profile.

RapidSwath also has a built-in demo. The demos uses an altitude of 2000 km and a field of view half-angle of 31
degrees. The function allows you to specify a pitch angle between the sensor boresight axis and the nadir axis, in this
case 15 degrees. When called with no outputs, the function generates a 3D plot. In Figure 13.6 on the following page
we have used the camera controls to zoom in on the sensor cone. The nadir axis is drawn in green and the boresight
axis in yellow.

The AttitudeProfileDemo shows how to assemble several profile segments together and get the resulting ob-
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Figure 13.6: RapidSwath built-in demo results

servation windows. The segments can be any of a number of modes, such as latitude/longitude pointing, nadir or sun
pointing, etc.

13.4 Visualization

The CubeSat Toolbox provides some useful tools to visualize orbits, field of view, lines of sight, and spacecraft
orientations.

Use PlotOrbit to view a spacecraft trajectory in 3D with an Earth map. The GroundTrack function plots the
trajectory in 2D and has the option of marking ground station locations.

Figure 13.7: Orbit visualization with PlotOrbit and GroundTrack
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The spacecraft model from CubeSatModel can be viewed with surface normals using DrawCubeSat. The vertex
and face information is not retained with the dynamical data, so DrawCubeSatSolarAreas can be used to verify
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the solar cell areas directly from the RHS data structure.

Figure 13.8: CubeSat model with deployable solar panels viewed with DrawCubeSat
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A representative model of the spacecraft may also be viewed in its orbit, along with a sensor cone and lines of sight to
all of the visible GPS satellites. Use DrawSpacecraftInOrbit.m to generate this view. An example is shown in
Figure 13.9. The image on the left shows the spacecraft orbit, its sensor cone projected on the Earth, the surrounding
GPS satellites, and lines of sight to the visible GPS satellites. The image on the right is a zoomed-in view, where the
spacecraft CAD model may be clearly seen.

Figure 13.9: Spacecraft visualization with sight lines using DrawSpacecraftInOrbit

Run the OrbitAndSensorConeAnimation.m mission planning demo to see how to generate simulated orbits,
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compute sensor cone geometry, and package the data for playback using PackageOrbitDataForPlayback and
PlaybackOrbitSim. The playback function loads two orbits into the AnimationGUI, which provides VCR like
controls for playing the simulation forward and backward at different speeds. Set the background color to black and
point the camera at a spacecraft, then use the camera controls to move in/out, zoom in/out, and rotate the camera around
the spacecraft within a local coordinate frame. The screenshot in Figure 13.10 shows the 3D animation window, the
AnimationGUI playback controls, and the camera controls. Press the Record button (with the red circle) to save the
frames to the workspace so that they may be exported to an AVI movie.

Figure 13.10: Playback demo using PlaybackOrbitSim
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ATTITUDE CONTROL DESIGN EXAMPLES
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CHAPTER 14

ATTITUDE CONTROL

14.1 ACS Overview

There are attitude control system design examples in SC, SCPro, and the Missions module (Missions). These design
examples are implemented as demonstration scripts. One, for the Microwave Anisotropy Satellite, MAP, is explained
in detail in the next chapter.

14.2 Design Examples

14.2.1 PID Design

Attitude3D in SC/Demos/Attitude provides a simple example of designing a three-axis PID control system using
PIDMIMO. A full CAD model is used with the Disturbances function in the simulation for calculating distur-
bances. REAControl (REA means Reaction Engine Assembly - assembly is sometimes used for hardware composed
of several major parts) extends this example to a satellite with thrusters, where equivalent pulse widths are calculated.

14.2.2 Magnetic Control

The SC module has both two-axis and three-axis magnetic control functions, MagControlTwoAxis and MagControlThreeAxis.
The three axis version take the integral of the magnetic field over the time vector. Both are functions with built-in de-
mos and are also featured in the demo MagControl. See SC/Demos/MagneticControl.

14.2.3 Microwave Anisotropy Satellite

This is a zero-momentum spacecraft using reaction wheels for control. As part of its mission it must spin and
moves its spin axis at a fixed angle with respect to an inertial reference. The script with the MAP implementation
is MAPControlSim in SCPro/Demos/ProControl.

14.2.4 Momentum Unloading

This design uses solar pressure on a double-gimballed solar array for two-axis momentum control. The script,
SolarMomentumControl.m in ProControl, maps out the torque produced over a range of gimbal angles before
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performing the simulation. See Figure 14.1.

Figure 14.1: Solar pressure torque map for double-gimballed solar array
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14.2.5 Sun Nadir Pointing

A sun nadir pointing spacecraft points its yaw-axis at the earth and rotates about yaw and steers its solar array so that the
solar array normal is aligned with the sun. GPS is an example of a sun-nadir pointing spacecraft. This design uses reac-
tion wheels for attitude control and magnetic torquers for momentum management. See SunNadirPointingSim.m
in the Missions module.

14.2.6 Roll Yaw Control Using a Double Pivot

This design controls the roll and yaw axes of a momentum bias spacecraft by moving a pivoted momentum wheel. It
is implemented in the script RollYawDoublePivot.m in Missions/Demos/Comsat.

14.2.7 ComStar

ComStar is a complete geosynchronous bias momentum design. It uses magnetic torquers for roll/yaw control and a
fixed momentum wheel for pitch control. During stationkeeping it uses thrusters for roll, yaw and pitch control. When
not in stationkeeping mode it uses only an earth sensor which gives roll and pitch information. Yaw is controlled via
the roll measurement. Since only the derivative of yaw can be observed in roll it is not possible to control body fixed
yaw disturbances. The spacecraft has a flexible solar array.

The design is contained in numerous scripts all found in the Missions/Demos/Comsat folder. The following analyses
are performed:

• Simulate the AKM firing

• Acquisition sequence

• Generate mass properties

• Simulate a dual spin turn.

• Computes the disturbances including solar, gravity gradient, RF and residual dipole.

• Design earth sensor noise filters

• Demonstrate a pointing budget
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• Design a PD controller for pitch

• Tests the MWA pitch loop

• Design and test the low frequency roll/yaw control system.

• Design and test the nutation compensator.

• Compensate the flexible solar array on the ComStar Spacecraft (orbit rate and nutation modes).

• Simulate a spin precession maneuver

• Demonstrate the automatic spin up

• Simulates transfer orbit
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CHAPTER 15

A WORKED DESIGN EXAMPLE

This section walks you through a complete design example, that of the Microwave Anisotropy Satellite normal and
acquisition modes.

15.1 The MAP Mission

The Microwave Anisotropy Probe is a three-axis controlled spacecraft. It employs reaction wheels for nominal attitude
control with star trackers and gyros for sensing. Ten hydrazine thrusters are available for backup attitude control, orbit
adjust maneuvers and momentum unloading. The rendering below was created using the toolbox CAD tools in the
script BuildMAP.

Figure 15.1: The Microwave Anisotropy Probe
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15.2 Control Modes

The MAP spacecraft requires three control modes:

• Mission control mode using reaction wheels with thrusters for momentum unloading. This mode would also
include the acquisition function.

• Backup mission control mode with thrusters for three-axis attitude control

• Orbit adjust mode using thrusters for three-axis attitude control. The reaction wheels are kept in a tachometer
mode during orbit changes.

Optionally, a safe hold mode could be added.

15.3 Sensing and Actuation

Nominally, MAP uses gyros for attitude determination and a star tracker to correct for gyro drift and for absolute
attitude information. The gyro and star tracker data would be integrated using an extended iterated Kalman filter. A
backup mode using just the star tracker would also be available. During most of the mission the reaction wheels are
used for attitude control. Secular momentum growth due to solar pressure would be controlled using the thrusters.
Momentum unloading could be autonomous or ground commanded. During orbit adjust modes the thrusters would
be used for attitude control since the disturbances due to the orbit adjust thrusters would quickly saturate the reaction
wheels.

15.4 Control System Design

The control system design is a modification of Princeton Satellite Systems’ standard three axis control system. The
control system employs tachometer inner loops for the three reaction wheels. The outer loops are two Proportional
Integral Differential (PID) loops for the transverse axes and a Proportional Integral (PI) loop for the spin axis. The
integral term in the PID controllers insures accurate tracking of the spin axis target. The inner reaction wheel loops are
PI controllers. The outer loops output an acceleration demand that is converted to a wheel speed demand and passed
to the reaction wheel tachometer loops. The inner loops insure proper reaction wheel response regardless of bearing
friction magnitude and uncertainty. A sampling rate of 4 Hz was chosen for the digital implementation of this control
system.

15.5 Simulation Results

Normal mode acquisition was simulated using the MAPControlSim script.The mass properties and the actuator
characteristics for the baseline MAP spacecraft were not available so generic parameters were used in the simulation.
The spacecraft model is for a gyrostat with three reaction wheels. All nonlinear terms are included. The simulation
models do not include sensor noise or external disturbances. The spacecraft is initially spinning at 0.464 rpm with the
spin axis aligned with the inertial Z axis. The desired precession angle command of 22.5 deg is fed into the control
loops through a low pass filter to eliminate transients. The gains of the filter are chosen so that acquisition is completed
within ten minutes.
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15.6 The MAPSim Script

In this section we will walk through the MAPControlSim . Once you understand how is was written you will be
able to easily design and build your own control systems and simulations. Listing 15.1 shows the header which defines
a few useful constants. The global variable is used to control the time GUI. We routinely close all windows.

Listing 15.1: File header MAPControlSim.m

1 %% Implements and simulates the MAP normal mode control.
2 % Demonstrate 3 axis control of a spinner using wheels.
3 % This is not the NASA design but one done in house. It shows how to
4 % integrate control design and simulation into a single script.
5 % This spacecraft is a spinner and has reaction wheels. The reaction
6 % wheels are used to control the orientation of the spin axis.
7 % The simulation demonstrates precession of the spin axis.
8 %
9 % This script also generates an STK attitude file.

10 % -------------------------------------------------------------------------
11 % See also PIDMIMO, PIDesign, FGs, QForm, QTForm, NPlot, Plot2D, PlotV,
12 % TimeGUI, STKAtt, CosD, RK4, SinD, JD2Date
13 % -------------------------------------------------------------------------
14 %%
15 %--------------------------------------------------------------------------
16 % Copyright (c) 1996-2010, 2016 Princeton Satellite Systems, Inc.
17 % All rights reserved.
18 %--------------------------------------------------------------------------
19 % Since version 1.
20 % 2016.1 - Update RHS to use function handle. Save STK file in same directory as
21 % this file.
22 %--------------------------------------------------------------------------

MAPControlSim.m

The sampling interval is both for the controller and the simulation. This is fine if your controller effectively sets the
highest frequencies in the simulation. If your model includes higher frequency terms (which would cause jitter) you
would need to use a smaller integration steps. The rest of the quantities are used to cause the simulation plot less
frequently than once per integration step.

Listing 15.2: Sampling intervals MAPControlSim.m

1 global simulationAction
2 simulationAction = ’ ’;
3

4 % Constants
5 % ---------
6 degToRad = pi/180;
7 radToDeg = 180/pi;
8 rPMToRPS = pi/30;
9

10 % STK Information
11 %----------------
12 sTKVersion = ’3.0’;
13

14 % The control sampling period and the simulation integration time step
15 % --------------------------------------------------------------------
16 tSamp = 0.25;

MAPControlSim.m

Listing 15.3 defines the spacecraft mass properties. This set is not based on the actual MAP properties but is for
demonstration purposes only. We are using a gyrostat (rigid body + wheels) model that allows for any number of
reaction wheels so we must include the spin axis inertias of the wheels. We will use three orthogonal wheels.

Listing 15.3: Mass properties MAPControlSim.m

1 % -------------------------------------------------------------------------
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2 %% Parameters for the spacecraft model
3 % -------------------------------------------------------------------------
4

5 % Spacecraft Inertias
6 % -------------------
7 inr = [2000,0,0;0,2000,0;0,0,4000];
8 inrRWA = 1;
9 inrW = [inrRWA,inrRWA,inrRWA];

10 invInr = inv(inr);
11 tDist = [0;0;0];

MAPControlSim.m

First design the inner tach loops for the reaction wheels. Our attitude control loops will actually command rate changes
to the wheels. The inner loops will handle uncertainty in friction, wheel motor scale factors, etc. PIDesign uses
pole placement to design a PI loop. In this example we will implement the controllers in delta form so that state space
equations produce deltas to the control commands, not the actual value.

Listing 15.4: Tachometer loop design MAPControlSim.m

1 % RWA Tach loops
2 % --------------
3 zeta = 0.7071; % Damping ratio
4 wN = 1.0; % Closed loop undamped natural frequency
5

6 [aTL,bTL,cTL,dTL] = PIDesign( zeta, wN, inrW(3), tSamp, ’Delta’ );

MAPControlSim.m

Next, design the attitude loops. We are only controlling the spin axis orientation so we only need two loops, roll and
pitch (we are spinning about yaw.) PIDMIMO designs a PID controller with a rate filter.

Listing 15.5: ACS design MAPControlSim.m

1 % Attitude Loops
2 % --------------
3 zeta = 0.7071; % Damping ratio
4 wN = 0.5; % Closed loop undamped natural frequency
5 wR = 4.0; % Rate filter break frequency
6 tau = 50; % Integrator time constant
7

8 [aRoll ,bRoll, cRoll, dRoll] = PIDMIMO( inr(1,1), zeta, wN, tau, wR, tSamp, ’Delta’);
9 [aPitch,bPitch,cPitch,dPitch] = PIDMIMO( inr(2,2), zeta, wN, tau, wR, tSamp, ’Delta’);

MAPControlSim.m

Listing 15.6 gives the yaw rate loop that will maintain the MAP spin rate. This uses the same PI controller as the
reaction wheels but with a slower time constant.

Listing 15.6: Rate loop MAPControlSim.m

1 % Rate Loops
2 % ----------
3 zeta = 1.0; % Damping ratio
4 wN = 0.5; % Closed loop undamped natural frequency
5

6 [aYaw, bYaw, cYaw, dYaw] = PIDesign( zeta, wN, inr(3,3), tSamp, ’Delta’ );

MAPControlSim.m

Now that the controller design is complete it is time to run a simulation to test the system. Of course we should also
do frequency domain analysis of the entire controller. Even though we used SISO design techniques this is really a
MIMO design. The controller has fast inner loops to control the wheels and slower outer loops to control the attitude.
Several tools exist in SCT for analyzing such systems.

The first step is to initialize the control system.

Listing 15.7: Initialize the control system MAPControlSim.m
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1 %% Initialize the control system
2 % -----------------------------
3 xTL = zeros(3,1);
4 xRoll = [0;0];
5 xPitch = [0;0];
6 xYaw = 0;
7 tC = [0;0;0];
8 spinRate = 0.464*rPMToRPS;
9 precRate = 2*pi/3600;

10 precAngleDemand = 22.5;
11 precAngle = 0;
12 precAngleGain = 0.995;
13

14 %% Momentum Management gain
15 % ------------------------
16 kMM = 0.00500;
17

18 % The control distribution matrix converts
19 % torque demand to angular acceleration demand
20 % --------------------------------------------
21 aRWA = eye(3)/inrW(3);
22 wRWAC = [0;0;0];

MAPControlSim.m

The following code sets up the simulation. We allocate memory for plotting arrays to save processing time. We also
set up the time statistics function which will display time statistics.

Listing 15.8: Set up the simulation MAPControlSim.m

1 %% Plotting arrays
2 % ---------------
3 cPlot = zeros( 3,nPlot);
4 hPlot = zeros( 3,nPlot);
5 tPlot = zeros( 1,nPlot);
6 xPlot = zeros(10,nPlot);
7 zPlot = zeros( 3,nPlot);
8 rPlot = zeros( 3,nPlot);
9 pPlot = zeros( 2,nPlot);

10 ePlot = zeros( 2,nPlot);
11 wPlot = zeros( 3,nPlot);
12 yPlot = zeros( 3,nPlot);
13

14 %% Initial conditions
15 % ------------------
16 % q w wRWA
17 x = [[1;0;0;0];[0;0;spinRate];[0;0;0]];
18

19 dTSim = tSamp;
20 t = 0;
21 nP = 0;
22 kP = 0;
23 tW = zeros(3,1);
24 roll = 0;
25 pitch = 0;
26 yaw = 0;
27

28 %% Initialize the time display
29 %----------------------------
30 tToGoMem.lastJD = 0;
31 tToGoMem.lastStepsDone = 0;
32 tToGoMem.kAve = 0;
33 ratioRealTime = 0;

MAPControlSim.m

This is the start of the simulation loop. The first function displays the status message in the command window.

Listing 15.9: Start of the simulation loop MAPControlSim.m
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1

2 % Display the status message
3 %---------------------------

MAPControlSim.m

We are using very simple sensor models for this demonstration. Just the true states without sensor dynamics, scale
factor errors, noise or any other effects that are quite important in practice.

Listing 15.10: Sensor models MAPControlSim.m

1

2 % ------------------------------------------------------------------------------
3 % Sensors
4 % ------------------------------------------------------------------------------
5

6 % RWA Tachometer
7 % --------------
8 wTach = x(8:10);
9

10 % Gyros
11 % -----
12 wCore = x(5:7);
13

14 % Attitude
15 %---------
16 qIToB = x(1:4);

MAPControlSim.m

Finally, we get to the control system implementation. The first part is the momentum management system which is
just a proportional controller.

Listing 15.11: Control system MAPControlSim.m

1

2 % -----------------------------------------------------------------------
3 % The Attitude Control System
4 % -----------------------------------------------------------------------
5

6 % Momentum Management
7 % -------------------
8

9 % Neglect the rate errors in the body component-assume exact tracking
10 % -------------------------------------------------------------------
11 hTotal = QTForm( qIToB, inr*[wCore(1);wCore(2);wCore(3)] + inrRWA*uW*(wTach+wCore) );
12

13 % Proportional controller for momentum
14 % We could feedforward this to the controller
15 % -------------------------------------------

MAPControlSim.m

We next compute the errors. These are what we will be controlling. Notice that the commanded precession angle is
filtered. This makes the system a two-degree-of-freedom control system and prevents the operator from putting in a
command that would saturate the actuators.

Listing 15.12: Error computation MAPControlSim.m

1

2 % Compute the errors
3 %-------------------
4 precAngle = precAngleGain*precAngle + (1-precAngleGain)*precAngleDemand;
5 cP = CosD(precAngle);
6 sP = SinD(precAngle);
7 xT = [sP*cos(precRate*t);sP*sin(precRate*t);cP];
8 xTB = QForm( qIToB, xT );
9 rollError = asin(xTB(2));

10 pitchError = -asin(xTB(1));
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MAPControlSim.m

These loops control the attitude and spin rate. The output is torque demand (tC).

Listing 15.13: Attitude loop MAPControlSim.m

1

2 % Convert torque demand to RWA angular acceleration demand
3 % --------------------------------------------------------

MAPControlSim.m

We convert torque into a demand on the wheels which we integrate to get wheel speed demand.

Listing 15.14: Compute wheel speed demand MAPControlSim.m

1

2 % Integrate to get wheel speed demand
3 % -----------------------------------

MAPControlSim.m

The wheels are commanded through the tach loops.

Listing 15.15: RWA tach loops MAPControlSim.m

1

2 % The RWA Tach Loops
3 % ------------------
4 wError = wTach - wRWAC;
5 tRWA = -dTL*wError - cTL*xTL;

MAPControlSim.m

This is the simulation. We are using the gyrostat model for this simulation.The gyrostat model FGs is called by RK4.
RK4 is a Fourth-Order Runge-Kutta method that works well for most spacecraft control simulation problems. It does
not do automatic error correction or computation. This means that you cannot tell how accurately it is integrating the
equations of motion from a single run. To check on numerical errors you should run your simulation at half the time
step and compare the results. If they are significantly different you will need to go to a smaller step size. The RK45,
with somewhat greater overhead, can be used in situations where you need to control the precision of your simulation.

Listing 15.16: Simulation MAPControlSim.m

1

2 % -----------------------------------------------------------------------
3 % Update the equations of motion
4 % -----------------------------------------------------------------------
5 x = RK4(@FGs,x,dTSim,t,inr,invInr,tDist+tMM,inrW,uW,tRWA’);

MAPControlSim.m

In the following listing we are saving information for the plots. The code under the comment “time control” allows
you to control the script from the time GUI.

Listing 15.17: Saving plot information MAPControlSim.m

1 % -----------------------------------
2 wRWAC = wRWAC + tSamp*wDRWA;
3

4 % The RWA Tach Loops
5 % ------------------
6 wError = wTach - wRWAC;
7 tRWA = -dTL*wError - cTL*xTL;
8 xTL = xTL + aTL*xTL + bTL*wError;
9

10 % -----------------------------------------------------------------------
11 % Update the equations of motion
12 % -----------------------------------------------------------------------
13 x = RK4(@FGs,x,dTSim,t,inr,invInr,tDist+tMM,inrW,uW,tRWA’);
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14 t = t + dTSim;
15

16 % Plotting
17 % --------
18 if nP == 0,
19 kP = kP + 1;
20 xPlot(:,kP) = x;
21 tPlot(1,kP) = t;
22 cPlot(:,kP) = tC;
23 hPlot(:,kP) = hTotal;
24 zPlot(:,kP) = tMM;
25 xI = QTForm(qIToB,[0;0;1]);
26 rPlot(:,kP) = xI;
27 pPlot(:,kP) = acos([xI(3);xT(3)]);
28 ePlot(:,kP) = [rollError;pitchError];
29 wPlot(:,kP) = xT;
30 yPlot(:,kP) = xTB;
31 nP = nPMax - 1;
32 else
33 nP = nP - 1;

MAPControlSim.m

After the simulation is done we plot the results.

Listing 15.18: Plotting MAPControlSim.m

1

2 j = 1:kP;
3 tPlot = tPlot(j);
4 epoch = JD2Date;
5

6 filePath = fileparts(mfilename(’fullpath’));
7 [err, message] = STKAtt( fullfile(filePath,’STKAttitudeFile.txt’),sTKVersion,epoch,kP,tPlot,

xPlot( 1: 4,j),’quaternion’);
8

9 Plot2D(tPlot,xPlot( 1: 4,j),’Time (sec)’,[’Q_s’;’Q_x’;’Q_y’;’Q_z’],’Quaternion’)
10 Plot2D(tPlot,xPlot( 5: 7,j),’Time (sec)’,[’\omega_x’;’\omega_y’;’\omega_z’],’Body Rates’)
11 Plot2D(tPlot,xPlot( 8:10,j),’Time (sec)’,[’W1’;’W2’;’W3’],’Reaction Wheels’)
12 Plot2D(tPlot,cPlot(:,j),’Time (sec)’,[’X’;’Y’;’Z’],’Control Torque Demand’)
13 Plot2D(tPlot,hPlot(:,j),’Time (sec)’,[’X’;’Y’;’Z’],’Body Momentum’)
14 Plot2D(tPlot,zPlot(:,j),’Time (sec)’,[’X’;’Y’;’Z’],’Momentum Management Torque’)
15 Plot2D(tPlot,pPlot(:,j)*radToDeg,’Time (sec)’,’Precession Angle (deg)’,’Precession Angle’)
16 PlotV([rPlot(:,j);wPlot(:,j)],’X’,’Y’,’Z’,’Spin Axis and Target’)

MAPControlSim.m

Figure 15.2 on the next page shows the results of PlotV. It shows the spin axis unit vector. It starts as [0;0;1] (the
highest point on the plot) and as the spacecraft acquires picks up y and x components until it traces out a circle in the
xy-plane. Figure 15.3 on the facing page shows the precession of the unit vector.
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Figure 15.2: Motion of the unit vector
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Figure 15.3: Precession of the unit vector
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15.7 Summary

As can be seen from the plots, the control system successfully acquires and tracks the target. The overall pointing
accuracy is better than 0.2 deg. All of the plots were generated using Spacecraft Control Toolbox functions. All of the
design functions and simulated functions fit in a single MATLAB script. The second plot shows the unit vector for the
spin-axis of the spacecraft in three dimensional space. Initially, it is aligned with the z-axis so its x and y components
are zero. After acquisition the x and y-axes trace out a circle in the xy-plane and the z value is constant.

The control system presented here is only part of the overall control architecture that includes not only the other
modes but also the attitude determination function, the momentum unloading system and the telemetry and command
functions. Although the spacecraft is mostly single string, a fault detection and isolation system might also be included
to protect the spacecraft against temporary problems.
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CHAPTER 16

ORBIT MODULE

16.1 Overview

This module (Orbit) contains software for orbit mechanics, orbit coordinate transformations, maneuver analysis and
planning, and simulation. There is a special GUI for performing high-fidelity orbit propagations using MATLAB’s
ode113 propagator with over 30 stopping conditions. The gravity functions allow user-selectable gravity models
such as GEM-T1, JGM-2, and WGS-84. A lunar gravity model is included as well.

The maneuver functions encompass a variety of types, including:

• Impulsive transfer analysis

• Low-thrust spirals and simulations

• Lambert law solver for large orbit changes

• Circumnavigation and glideslopes using pulses

• Bielliptic and Hohmann transfers

• Stationkeeping analysis

Additional analysis tools include a two-line element propagator, linearized orbit model, Gauss’ variational equations,
fuel budgets, and J2 effects. Equinoctial and Keplerian orbit mechanics are supported as well as cartesian, cylindrical,
and spherical frames. If a tool or algorithm you want isn’t available, please let us know!
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CHAPTER 17

ORBIT PROPAGATION EXAMPLES

This chapter gives examples from textbooks. One additional example showing the effects of the ode113 integration
tolerance parameters is given at the end. Each example is included as a demo file in the demo directory.

17.1 Low Thrust Orbit Raising

Reference

Wiesel, W. E. (1989.) Spaceflight Dynamics. McGraw-Hill. pp. 89-90.

Introduction

If a small thrust is tangent to the orbit and its magnitude is small and constant, the semi-major axis time derivative is
given by Wiesel in Equation (3.61)

da

dt
=

2
√
µ
a(3/2)A (17.1)

where a is the semi major axis and A is the tangential acceleration. The solution is

a−1/2 = a
−1/2
0 − A

√
µ

(t− t0) (17.2)

Results

Type

LowThrustDemo

in the command window. The last plot will show the difference between the propagator and the analytical model
(Figure 17.1 on the next page).

The results are very close showing both the accuracy of the integrator when a perturbation is introduced and the
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Figure 17.1: Comparison of an analytical low thrust model with the propagated solution.
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accuracy of the approximation. An important point is that the numerical result is very dependent on the tolerances
chosen. When the default relative tolerance was used, the numerical solution showed a much greater increase in semi-
major axis. Consequently, before certifying a result you should always make runs with different tolerances. Ideally,
you should find the closest analytical solution and choose the tolerance based on how close the numerical results come
to the analytical.

17.2 Reentry Due to Drag

Reference

Wiesel, W. E. (1989.) Spaceflight Dynamics. McGraw-Hill. pp. 83-84.

Introduction

Given an exponential atmosphere, the time derivative of the semi-major axis is

da

dt
= −√µaCDA

m
ρ0e

(−(a−RE))/h (17.3)

where CD is the drag-coefficient, A the effective area, m the spacecraft mass, RE the radius of the earth and h the
atmospheric scale height.

This can be analytically integrated. However, a simpler form emerges if the dependent variable is changed from a
to H , the altitude, and H is recognized as being small relative to RE . The solution to the differential equation then
becomes
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H = h ln

(
eH0/h −

ρ0
√
µRE

(
CDA
m

)
h

(t− t0)

)
(17.4)

This equation does not account for the motion of the earths atmosphere. In this example we use the Standard Atmo-
sphere and select the scale height for the analytical model so that the atmospheric density given by the exponential
model is the same as the density given by the standard atmosphere.

Results

Type

DragDemo

As expected, the propagator shows slightly less decay due to the rotation of the atmosphere (Figure 17.2).

Figure 17.2: Reentry Due to Drag
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17.3 Topex Ephemerides

Reference

Vallado, D. A. and W. D. McClain. (1997.) Fundamentals of Astrodynamics and Applications. McGraw-Hill. p.536.

Introduction

In this example we compare Topex data with Keplerian orbit data and the results of the PropagateOrbitPlugin.
Topex is a sun-nadir pointing spacecraft in a 1300 km altitude orbit. The perturbations of significance will be
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• Gravitational harmonics

• Solar pressure

• Sun and moon perturbations

A sun-nadir pointing spacecraft maneuvers about yaw and rotates its solar array so that the solar array is always
pointing at the sun. This fits in well with the FSolar model which assumes that the spacecraft (approximated as a flat
plate) normal is aligned with the sun vector. That aside, the optical surface properties are unknown and the geometry
of the rest of the spacecraft is not known which will limit the accuracy of the model.

Results

Type

TopexDemo

The Topex ECI ephemerides are shown in the Figure 17.3. The range of R and V do not vary much over the period of
the orbit.

Figure 17.3: Topex Ephemeris Cycle 10
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Figure 17.4 on the facing page shows the error between the Topex orbit and a perfect Keplerian orbit. The osculating
elements at the start of the Topex file were used for the Kepler propagator. The osculating elements are given in
Table 17.1 on the next page. The differences are enormous by the end of the simulation. Essentially, the Topex orbit
is completely out of phase with the spherical model.

Figure 17.5 on the facing page shows the difference between the Topex Ephemeris and PropagateOrbitPlugin
when just the GEM-T1 spherical earth model was used. The results (as expected) are the same.

Figure 17.6 on page 148 shows the Topex Orbit in 3D referenced to the earth-fixed frame.

Figure 17.7 on page 148 shows the difference when 4 GEM-T1 zonal harmonics are added. The results show a
dramatic improvement in the tracking of the orbit. Finally, 4 tesseral harmonics are added in Figure 17.8 on page 149.
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Table 17.1: Topex Osculating Elements at the Beginning of the Simulation.

Element Value

a 7719.2 km
i 1.1528 rad
ω -0.39392 rad
Ω -0.94544 rad
e 0.00025586
M 0.52091 rad

Figure 17.4: Difference Between the Topex Ephemeris and a Keplerian Orbit
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Figure 17.5: Difference Between the Topex Ephemeris and a Propagated Spherical Earth Model
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Figure 17.6: Topex Orbits in 3D

Figure 17.7: Difference Between the Topex Ephemeris and a propagated orbit with 4 Zonal Harmonics
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Again, an improvement is noted.
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Figure 17.8: Difference Between the Topex Ephemeris and a propagated orbit with 4 Zonal and 4 Tesseral Harmonics
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17.4 Integration Tolerance

Reference

MATLAB User’s Guide.

Introduction

There are two integration tolerance parameters for ode113; one is relative tolerance and one is absolute tolerance.

Results

Type

IntegrationAccuracyDemo

Figure 17.9 on the following page shows the effects of varying the integration tolerances for a 7000 km circular orbit.

The main diagonal plot units, with relative tolerances of 1e-12, are in centimeters while the off-diagonal plots, with
relative tolerances of 1e-6, are in meters.

The differences are substantial. If you used the tolerances in the upper right hand corner, and didnt know that the
orbit was unperturbed, you might think that the orbit was decaying! This also shows the danger of comparing one
simulation against another. Unless you know the error tolerances for both runs, and have a good idea how the error
correction algorithms work in both cases, your comparison could be meaningless.

You always want to get your simulations done as fast as possible. This is particularly true if you are doing Monte
Carlo type analyses. Tighter tolerances mean longer simulation times. A balance must be made between integration
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Figure 17.9: Effect of Integration Tolerances on Orbit Propagation
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accuracy and time.

The number of samples output does not have an effect on simulation time.

The durations for the four simulations are given in the following table. These durations include all graphics generated
at the end of the simulations.

Table 17.2: Simulation Times for a 140 hour Circular Orbit Simulation run on a 500 MHz Apple PowerBook G3

Rel Tol Abs Tol Duration (sec) Accuracy
1e-12 1e-12 76.3 15 cm
1e-06 1e-12 36.2 1000 m
1e-06 1e-06 37.6 1000 m
1e-12 1e-06 62.4 20 cm
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ORBIT MANEUVERS

This chapter shows you how to plan orbit maneuvers.

18.1 Orbit Maneuver Functions

The following listing from OrbMnvrDemo will result in a demo of many of the orbit maneuver functions.

Listing 18.1: Orbit maneuver demonstration script
OrbMnvrBiElliptic
OrbMnvrHohmann
OrbMnvrInclination
OrbMnvrOneTangent
OrbMnvrLongitude
OrbMnvrLongAndIncl
OrbMnvrSemimajor

The following listing shows the results of running the script. Each function has a built-in demonstration to illustrate the
inputs and outputs of the function. Each implements a relatively simple maneuver and they are useful for developing
maneuver strategies.

Listing 18.2: Results
Bi-elliptic Transfer
------------------------------------------------
Initial Orbit Radius = 6569.5100
Final Orbit Radius = 382689.9000
Intermediate Orbit Radius = 510253.2000
------------------------------------------------
Delta V Total = 3.9040
Delta V at A = 3.1562
Delta V at B = 0.6774
Delta V at C = 0.0705
Time of Flight = 593.9238 hours

Hohmann Transfer
------------------------------------------------
Initial Orbit Radius = 6569.5091
Final Orbit Radius = 42159.5136
------------------------------------------------
Delta V Total = 3.9352
Delta V at A = 2.4570
Delta V at B = 1.4782
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Time of Flight = 5.2567 hours

Inclination Correction
------------------------------------------------
Velocity = 3.5680
Eccentricity = 0.3000
True anomaly = 150.0000 deg
Inclination Correction = 15.0000 deg
------------------------------------------------
Delta V Total = 0.9129
Flight Path Angle = 11.4559 deg

One-Tangent Transfer
------------------------------------------------
Initial Orbit Radius = 6569.5091
Final Orbit Radius = 42159.5136
True anomaly = 160.0000 deg
Type = periapsis
------------------------------------------------
Delta V Total = 4.6993
Delta V at A = 2.5754
Delta V at B = 2.1239
Eccentric Anomaly = 127.8053 deg
Time of Flight = 3.4574 hours

Longitude Correction
------------------------------------------------
Velocity = 5.8923
Inclination = 55.0000 deg
Longitude Correction = 45.0000 deg
------------------------------------------------
Delta V Total = 3.6942
Initial latitude = 103.3647 deg
Final latitude = 76.6353 deg

Longitude Correction
------------------------------------------------
Velocity = 5.8923
Inclination = 0.0000 deg
Longitude Correction = 45.0000 deg
------------------------------------------------
Delta V Total = 3.6159
Initial latitude = 128.9041 deg
Final latitude = 97.3803 deg

Semimajor Axis Correction
------------------------------------------------
Velocity = 7.7843
Semimajor axis = 6578.0000
Semimajor axis Correction = 13.0000
------------------------------------------------
Delta V Total = 0.0077

18.2 Launch and Early Orbit Operations

The toolbox can be used for Launch and Early Orbit Operations (LEOP) analysis. LEOPAnalysis.m demonstrates
these capabilities. Liquid apogee engines (LAEs) allow for precise control of insertion burns leading to less of a
need to use the mission orbit system. However, because LAEs have much lower thrusts than solid motors it is neces-
sary to perform multiple burns (compared to one for the solid). The script allows you to select a burn sequence for
geosynchronous orbit transfer using a single array
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burn = [0 0.5 0 0.3 0 0.15 0 0.05 0]

In this case nine revolutions (orbits) are in the plan and there are burns on rev 2, 4, 6 and 8. The number is the
percentage of the total delta-v to be done on each burn. The script uses the rocket equation to compute the total
amount of fuel needed for the spacecraft. All burns are done around apogee so the required delta-v vector is

∆v = vdrift − vtransfer

where drift refers to the orbit after the final burn because the insertion point is usually not the final station and the
spacecraft “drifts” to station. Transfer orbit is the orbit upon separation from the launch vehicle.

Figure 18.1 shows the transfer orbit and the semi-major axis, inclination and eccentricity. The five distinct orbital
paths correspond to the initial transfer orbit followed by the four burn sequence. The script uses MATLAB’s ode113
for orbit propagation and uses ode113’s “events” capability to find apogee on each burn rev. The entire script is only
172 lines long and can be easily customized to provide more sophisticated burn planning.

Figure 18.1: Launch and early orbit operations analysis

The dynamical model uses a point mass Earth model, although higher fidelity models can easily be used instead (the
toolbox includes a 36th order gravity model). In this example the final burn leaves the spacecraft on station. In practice,
it would be left with some drift velocity. In addition, the burn vector is held constant when small adjustments might
need to be made due to orbit determination errors and orbit perturbations.

18.3 Drag Correction Example

This example shows how to compute the compensation for drag. The script is shown in Listing 18.3. The demo first
compares an analytical model of drag with the orbit propagator. It then computes osculating elements for each (r, v)
pair. The osculating elements are plotted. The trend shows a steady decrease in semimajor axis. This delta is then
compensated for by a burn at perigee computed using one of the maneuver functions.

Listing 18.3: Drag correction script DragCompensationDemo.m

mu = Constant(’mu earth’);
rE = Constant(’equatorial radius earth’);
area = 1; % mˆ2
mass = 100;
cD = 2.7;
bStar = cD*area/mass;
H0 = 200;
H1 = 200;
H2 = 180;
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rho1 = AtmDens2( 200 );
rho2 = AtmDens2( 180 );
h = (H2-H1)/log(rho1/rho2);
rho0 = rho1/exp(-H1/h);
dT = 3600;
nSim = 10;

t = (0:(nSim-1))*dT;
xPlot = zeros(2,length(t));
xPlot(1,:) = h*log( exp(H0/h) - sqrt(mu*rE)*bStar*rho0*1e3*t/h );

% Run the orbit propagator in batch
%----------------------------------
d = load(’DragCompensationDemo.mat’);
tag = PropagateOrbitPlugIn( ’initialize’ );
PropagateOrbitPlugIn( ’set data’, tag, d );
PropagateOrbitPlugIn( ’propagate’, tag );

r = PropagateOrbitPlugIn( ’get r’, tag );
v = PropagateOrbitPlugIn( ’get v’, tag );
nP = size(r,2);

if( ˜isempty(r) & ˜isempty(v) & nP > 0 )
t = t(1:nP);
xPlot = xPlot(:,1:nP);
xPlot(2,:) = RV2AE( r, v, mu ) - rE;
[t, xLabl] = TimeLabl( t );
[h, hA] = Plot2D( t, xPlot, xLabl, ’H’ );
legend( hA.h, ’Analytical’, ’Propagator’ );

n = nP;
for k = 1:n

el(:,k) = RV2El( r(:,k), v(:,k) )’;
end

yL = [’a’;’i’;’W’;’w’;’e’];
Plot2D( t, el(1:5,:), ’Time’, yL, ’Elements’ );

% Compute the change in semimajor axis
%--------------------------------------
deltaA = el(1,1) - el(1,end);
deltaV = OrbMnvrSemimajor( Mag(v(:,1)),el(1,1),deltaA);
disp(sprintf(’Drag compensation delta-V is %12.4f km/sec’,deltaV.total));

end

DragCompensationDemo.m

This demo also shows you how to use the orbit propagator in batch mode. When you execute the script the Orbit
Propagator GUI appears as shown in Figure 18.2 on the next page. The aero model inputs are shown as well.

The model assumes the vehicle is a sphere with a simple drag coefficient. The first plot (Figure 18.3 on the facing
page) shows the analytical and propagated results. The next plot shows the variation in the orbital elements.

Since the orbit is circular the argument of perigee is not well-defined. The variation in the semimajor axis is nearly
linear. This variation is used to compute the required delta-V.

The required delta-V is displayed in the command window.

>> DragCompensationDemo
Drag compensation delta-V is 0.0077 km/sec

Spacecraft Control Toolbox 154



CHAPTER 18. ORBIT MANEUVERS 18.3. DRAG CORRECTION EXAMPLE

Figure 18.2: Orbit propagation GUI and aero model inputs

Figure 18.3: Comparison of analytical drag with propagated
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Figure 18.4: Orbital elements
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18.4 Glideslopes

A glideslope is a trajectory where range rate is proportional to range. This can be used for rendezvous and proximity
operations, however, these algorithms are only applicable to circular orbits. The toolbox has functions for generating
maneuvers for inbound and outbound glideslopes. The same functions can also be used for circumnavigation in a set
number of pulses.

The functions in glideslope have built-in demos. The function GlideslopePlanner calculates sequential glides-
lope maneuvers. The default data contains three segments, an inbound slope, a circumnavigation, and an outbound
slope. The Clohessy-Wiltshire equations are used to propagate in between segments.

Listing 18.4: Default data for the built-in demo GlideslopePlanner.m

%-------------------------------------------------------------------------------
% Default data for a planning demo
%-------------------------------------------------------------------------------
function d = DefaultData

% Inbound slope
d(1).x0 = [1000; 1000; 1000; 0; 0; 0];
d(1).rTarget = [300; 0; 0];
d(1).V = -[17.56 0.084];
d(1).T = 10*60;
d(1).N = 4;
% Circumnavigation
d(2).rTarget = 300;
d(2).V = [];
d(2).T = 30*60;
d(2).N = 8;
d(2).a = [0;1;0];
% Outbound slope
d(3).rTarget = [750; 750; 750];
d(3).T = 6*60;
d(3).N = 4;
d(3).V = [1 10];

GlideslopePlanner.m
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The results of this demo are shown in Figure 18.5. The maneuvers are indicated by red triangles.

Figure 18.5: Glideslope demo results
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CHAPTER 19

ORBIT PROPAGATOR GUI PLUGIN

This chapter shows you how to propagate orbits and perform related tasks using the Propagator Plug In tool,
PropagateOrbitPlugIn. This tool enables you to create some very elaborate propagations without writing
lengthy scripts. The functions can be found in the OrbitPropagator folder.

19.1 The Orbit Propagator Tool

19.1.1 Introduction

The function PropagateOrbitPlugIn allows for 3 degree-of-freedom propagation of orbits. It can be used
interactively or in batch mode. It has the following features:

• User selectable gravity models. GEM-T1, JGM-2, JGM-3 and WGS-84 are supported. Other models can be
downloaded.

• Ballistic propagation of covariance matrix for state vector. A plug in function allows the user to control the plant
noise covariance matrix.

• Propagate in ECI, ECR (earth-fixed) or ECIR. The last is an inertial frame that is coincident with EF at time 0.

• The user has complete control accuracy of numerical integration. The propagator uses the MathWorks’ state-of-
the-art ode113 propagator.

• The user can select the time step. The time step can be variable and negative. It can be defined by any MATLAB
expression or function.

• The user can specify any one of over thirty stopping conditions.

• Flight path angle, altitude, geodetic latitude and longitude are automatically computed.

• Outputs can be saved to a mat-file for further analysis.

• Sun/moon/earth perturbations can be added if you are propagating in an earth-centered or moon-centered frame.

19.1.2 Limitations

The following are some limitations that will be addressed in a future version:

• The propagator does not switch centers when the trajectory leaves one planet’s sphere of influence and enters
another.
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• Only the moon and sun are added as perturbations when the earth is the center and the sun and earth are entered
as perturbations when the moon is the center.

• Only centers for which the toolbox has pictures are included. This leaves out many moons.

• Only Mean-of-Aries 2000, Earth-Fixed and inertial coincident with earth-fixed frames are available.

• The noise function is not computed automatically.

19.2 Using the Graphical User Interface

The graphical user interface displays all options for using the propagator.

Figure 23-1 Orbit Propagation GUI

19.2.1 Overview

The orbit propagator interface, which is created by PropagateOrbitPlugIn.m, allows you to propagate any type
of orbit using ode113, the MathWork’s state-of-the-art propagator.

The GUI has several different “panes.” These are summarized below. The following sections discuss each in more
detail.

• Time Pane - set the time

• Elements Pane - set the initial orbital elements. These are always referenced to the ECI frame

• Atmosphere Pane - select one of four atmosphere models

• Propagation Pane - select the coordinate frame in which to propagate

• Gravity Model Pane - select the gravity model and the order of the model

• Stopping Conditions Pane - select the stopping condition for the simulation

• Customization Pane - select simulation options and functions you wish to plug into the simulation

• Buttons - control the simulation

The propagator can be run interactively or as part of a MATLAB script.

19.2.2 Panes

Time Pane

The time plug-in, in the upper right corner of the Propagator window, contains the values for the epoch, maximum
duration, and time step of the next propagation run. This plug-in allows you to convert the epoch between Julian
Date and UTC Calendar date. The duration field allows you to enter a maximum duration for the run. If the specified
stopping condition is not met within the specified duration the run will stop. The default duration is one hour. The DT
field allows you to specify the time step of the propagation. The default DT is 100 seconds. DT may be negative.

A set of times can be entered for the duration. For example you could enter:

0:25 hr

or

linspace(0,60000,1000) sec
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or

[0 1 7 9 11 22 43 900] min

or

[900 43 22 11 9 7 1 0] hr

or

MyTimeSequence hr

or

3 orbits

Any MATLAB command or function can be entered into duration. If anything except a time is entered, DT is ignored.
The output will be computed at these specific times only. The numerical integration routine will select the appropriate
time step to achieve the specified numerical accuracy independent of the entered times.

Elements Pane

The elements plug-in allows you to enter and convert between Keplerian elements, equinoctial elements, and RV
elements. The planet used for the orbit center is also shown. Element sets are given in the following table. The RV
elements are position and velocity vector.

Table 19.1: Element sets

Keplerian RP/RA Equinoctial RV
a Semi-major axis Rp Perigee radius a Semi-major axis r1
i Inclination i Inclination P1 r2
Ω Right Ascension of the Ascending Node Ω Right Ascension P2 r3
ω Argument of Perigee ω Argument of Perigee Q1 v1
e Eccentricity Ra Apogee radius Q2 v2
M Mean anomaly M Mean anomaly l Mean longitude v3

Atmosphere Pane

You can select any one of four models. The first two are altitude dependent and are based on a spherical planet model.
The third will enable the default Atmospheric density plugin function, FAtmDensity, which implements the Jacchia
J70 model. Other... allows you to enter your own atmosphere model.

Propagate Pane

This selects the frame in which to propagate. The ECIR frame is an inertial frame which coincides with the EF frame
at the start of the simulation.

Gravity Model Pane

The Database model is a spherical planet model with the gravitational parameter extracted from the Constant
function. Currently, this the only model you can use for planets or moons other than the earth.

You can download GEMT*, JGM-* and WGS84 models from various websites. Any file with the suffix .GEO will be
displayed in the pull-down menu. You can enter the number of zonal and tesseral harmonics you wish to use. If you
just want the J2 or J4 zonal, you can hit the button to set the appropriate model order.
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Stopping Conditions Pane

You can select any combination of stopping conditions listed in the pane. For each you can enter a tolerance. Some
require data. The stopping conditions are described in the following table. Some of the conditions aren’t relevant to
true Keplerian orbits in which the orbital elements do not change.

Table 19.2: Stopping Conditions
Stopping Condition Explanation
Impact Stop when orbit crosses the central body ellipsoid. This is the same as setting the

geodetic altitude to zero.
Ascending Node Stop at the ascending node.
Descending Node Stop at the descending node.
Apoapsis Stop at apoapsis.
Periapsis Stop at periapsis
Argument of Latitude Stop when ω + ν = value
XZ Crossing Stop when ECI y = 0
XY Crossing Stop when ECI z = 0
YZ Crossing Stop when ECI x = 0
True Anomaly Stop when ν = value
Approaching Distance Stop when r = value and is decreasing
Receding Distance Stop when r = value and is increasing.
Increasing Velocity Stop when v = value and is decreasing
Decreasing Velocity Stop when v = value and is increasing.
Flight Path Angle Stop when the flight path angle = the value
Perigee Height Stop when perigee radius = value
Apogee Height Stop when apogee radius = value
Geodetic Latitude Stop when geodetic latitude = value
Geocentric latitude Stop when geocentric latitude = value
Geodetic Altitude Stop when geodetic altitude = value
Semi major Axis Stop when a = value
Mean Anomaly Stop when M = value
Orbital Period Stop when orbital period = value
Right Ascension of Ascending Node Stop when Ω = value and only at the descending node
Right Ascension of Descending Node Stop when Ω = value and only at the ascending node
Change in Inertial Velocity Magnitude Stop when |v| = value
Vehicle Longitude Stop with earth-fixed longitude = value
Argument of Perigee Stop when argument of perigee = value
Eccentric Anomaly Stop when E = value

Customization Pane

The first four buttons are the names of functions the propagator should call. The default names in the GUI are default
functions. When you hit Initialize, the function will display an initialization GUI.

The Noise Function returns the plant noise matrix, q, for the covariance propagation:

pDot = f*p + p*f’ + q

where f is the matrix of partials of the right-hand-side of the orbit.

The initial mass is the mass of the spacecraft.

The next two parameters relate to the integration accuracy.

Rel Tolerance gives the relative error tolerance. The estimated error in each integration step satisfies
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e(i) <= max(RelTol*abs(y(i)),Tol(i))

Integration Tolerance gives the absolute error tolerance which applies to all components of the solution vector.

The next two checkboxes allow you to select planetary perturbations and/or to propagate the covariance. When you
select planetary perturbations you will get the moon and the sun if the earth is selected as the center through the
elements pane or the earth and the sun if the moon is selected as the center. If you select other planets or moons you
will not get any perturbations.

When you select Propagate Covariance the initial covariance input will be enabled. You should enter the initial state
covariance into the box. You need only enter upper or lower triangular information. The propagator automatically
does

p = 0.5*(p + p’)

to insure that the covariance matrix is symmetric. You have the option to select Spherical Cov. This uses a spherical
earth model just to propagate the covariance. This is much faster than using the full model.

Buttons

The following is the list of buttons in the GUI.

• Save Plot Data saves the plot data in a mat file of type *.OPP. The plot is saved as a matrix with rows:
[x;y;z;vX;vY;vZ;mass;pXX;....pVZVZ;pXY;pYZ...] p is saved in columns starting with the main diagonal and
moving up. For example, a 3x3 matrix would be saved as [a11;a22;a33;a12;a23;a13];

• Close PlotsClose the plot windows.

• OpenOpen a gui dat file of type *.OPG.

• Save DataSave the gui data in a mat file of type *.OPG.

• PropagateRun the propagator.

• QUITQuit. It will ask you to save unsaved plot and GUI data.

• HelpGet help.

19.3 Plugin Functions

The orbit propagator has four plugin in functions that allow you to customize the simulation. When you first bring up
the GUI four default functions are shown. They are described in Table 19.3.

Table 19.3: Plugin Functions

Function Description
FEngine Computes engine force and spacecraft mass. The force is in the LVLH frame.
FAero Computes aero forces in the ECI frame.
FSolar Computes solar forces in the ECI frame.
FPlantNoise The Q matrix in the covariance propagation equation.
FAtmDensity Atmospheric density. The baseline model is Jacchia J70.

Each model supplied with the toolbox has its own GUI. These popup when you hit the Initialize button next to each
function’s name.

The FEngine model, Figure 19.1 on the next page, allows you to enter a constant force in the ECI frame and a
constant mass change rate.
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Figure 19.1: FEngine GUI

The FAero model, Figure 19.2, assumes a flat plate spacecraft with the plate always normal to the velocity vector.
The input is the product of the drag coefficient and plate area.

Figure 19.2: FAero GUI

The FSolar model, Figure 19.3, is a flat plat model in which the plate is always normal to the sun vector.

Figure 19.3: FSolar GUI

FPlantNoise function, Figure 19.4 on the facing page, assumes a constant plant noise covariance matrix. The
inputs are the uncertainty in body accelerations.

The FAtmDensity GUI, Figure 19.5 on the next page, gives inputs for the Jacchia J70 model. The J70 inputs are
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Figure 19.4: FPlantNoise GUI

given in Table 19.4 on the facing page.

Figure 19.5: FAtmDensity GUI

Table 19.4: Jacchia J70 Atm inputs

Input Description
aP Geomagnetic index 6.7 hours before the computation
f Daily 10.7 cm solar flux (e-22 watts/m2/cycle/sec)
fHat 81-day mean of f (e-22 watts/m2/cycle/sec)
fHat400 fHat 400 days before computation date

19.4 Building a Plugin Function

All plugin in functions have the same structure. In this section, we will walk you through the structure of FAero, the
simplest function.

Listing 19.1: Function Definition FAero.m

1 function x = FAero( action, modifier, u, t )

FAero.m

Listing 19.2 on the next page shows the switch statement that makes up the main function. action is the argument
for the switch statement and modifier is the GUI tag, which identifies the GUI.
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Listing 19.2: Main Function Body FAero.m

1 if( nargin < 1 )
2 action = ’initialize’;
3 end
4

5 switch action
6

7 case ’initialize’
8 x = Initialize( modifier );
9

10 case ’update’
11 x = Update( modifier, u, t );
12

13 case ’get data’
14 x = GetData( modifier );
15

16 case ’store data’
17 h = GetH( modifier );
18 h.d = GetData( modifier );
19 PutH( h );
20

21 case ’set data’
22 SetData( modifier, u );
23

24 case ’help’
25 HelpSystem( ’initialize’, ’OnlineHelp’ );
26

27 case ’quit’
28 h = GetH( modifier );
29 if( ishandle( h.propagateOrbitPluginTag ) )
30 PropagateOrbitPlugIn( ’close function’, h.propagateOrbitPluginTag, ’FAero’ );
31 end
32 CloseFigure( h.fig )
33

34 end

FAero.m

The Initialize subfunction draws the GUI and returns the tag for the figure.

Listing 19.3: Initialize FAero.m

1 function tag = Initialize( propagateOrbitPluginTag )
2

3 name = ’Aero Model Initialization’;
4 position = [5 5 300 200];
5 tag = GetNewTag( name );
6 h.fig = figure( ’position’, position,’color’,[0.66 0.66 0.66], ’NumberTitle’, ’off’,...
7 ’name’, name, ’resize’, ’off’, ’tag’, tag, ’CloseRequestFcn’,

CreateCallback( ’quit’, tag ) );
8 fontSize = position(4)*9/185;
9 v = { ’parent’, h.fig, ’fontunits’, ’pixels’, ’fontsize’, fontSize, ’

horizontalalignment’,’left’};
10 space = position(3)/40;
11 x0 = space;
12 dX = position(3)/2;
13 xW = dX - space;
14 dY = (position(4) - 2*space)/3;
15 yW = dY - space;
16

17 x = x0;
18 y = position(4) - dY;
19

20 % The orbit propagator tag
21 %-------------------------
22 h.propagateOrbitPluginTag = propagateOrbitPluginTag;
23

24 hMatlab6Bug = uicontrol(’visible’,’off’); % Added to fix a Matlab 6 bug

Spacecraft Control Toolbox 166



CHAPTER 19. ORBIT PROPAGATOR GUI 19.4. BUILDING A PLUGIN FUNCTION

25

26 % Inputs
27 %-------
28 h.gui.cDAText = uicontrol( v{:}, ’position’, [x y xW yW], ’string’, ’cD*A’, ’style’, ’text

’ ); x = x + xW + space;
29 h.gui.cDA = uicontrol( v{:}, ’position’, [x y xW yW], ’string’, ’0’, ’style’, ’edit

’ ); x = x0; y = y - dY;
30

31 % GUI controls
32 %-------------
33 xW = (position(3) - 5*space)/3;
34 x = position(3) - xW - space;
35 y = y - space;
36

37 h.gui.help = uicontrol( v{:}, ’position’, [x y xW yW], ’string’, ’Help’, ’callback’,
CreateCallback( ’help’, tag ) ); x = x - xW - space;

38 h.gui.quit = uicontrol( v{:}, ’position’, [x y xW yW], ’string’, ’QUIT’, ’callback’,
CreateCallback( ’quit’, tag ) ); x = x - xW - space;

39

40 PutH( h )

FAero.m

The Inputs and GUI controls lines show you how to write uicontrols for edit boxes seen in the GUI. uicontrols require
you to pass them parameters in pairs. To simplify the code we put a lot of the parameters in the cell array v. The
CreateCallback subfunction (Listing 19.4) generates a call back to the FAero function. For example the last line
creates the call:

FAero( quit ’, tag )

Listing 19.4: CreateCallback FAero.m

1 function s = CreateCallback( action, modifier )
2

3 s = [’FAero( ’’’ action ’’’,’’’ modifier ’’’)’];

FAero.m

See the MATLAB documentation on how to build GUIs for more information. The get data function gets data stored
in the GUI and set data sets the data. SetData is used by the orbit propagation function when you pass it the saved
propagator data structure. GetData is used internally as shown in the next listing.

Listing 19.5: Getting and setting data FAero.m

1 %---------------------------------------------------------------------------
2 % Get the data from the gui
3 %---------------------------------------------------------------------------
4 function d = GetData( modifier )
5

6 h = GetH( modifier );
7

8 d.cDA = str2num( get( h.gui.cDA, ’string’ ) );
9

10 %---------------------------------------------------------------------------
11 % Set the data in the gui
12 %---------------------------------------------------------------------------
13 function SetData( modifier, d )
14

15 h = GetH( modifier );
16

17 set( h.gui.cDA, ’string’, num2str( d.cDA ) );

FAero.m

The Update subfunction computes the aerodynamic drag. It gets the figure handle, gets the data from the figure
handle, and combines it with the velocity stored in data structure u, to compute the force.

The next listing completes our review of FAero.
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Listing 19.6: The Update subfunction FAero.m

1 function x = Update( modifier, u, t )
2

3 h = GetH( modifier );
4 d = GetData( modifier );
5

6 x = -0.5*d.cDA*u.rho*Mag(u.v)*u.v*1e3; % kg-km/secˆ2: mˆ2*(kg/mˆ3)*kmˆ2/secˆ2, kg-kmˆ2/m
secˆ2

FAero.m

19.5 Reference Frames

19.5.1 Coordinate Transformations

CoordinateTransform, in the Common/Coord portion of the Core module, transforms between:

• ECI

• ECR

• Geodetic latitude, longitude and altitude

For example

r = [6524.834;6862.875;6448.296];
x = CoordinateTransform( ’eci’, ’ef’, r, 2449773 )
x =

1.0e+03 *
2.85101441661017
9.03243563995358
6.44514208556912

x = CoordinateTransform( ’eci’, ’llr’, r, 2449773 )
x =

1.0e+03 *
0.00059923067421
0.00126505172630
5.08520910899187

19.5.2 Finding ECI/ECR coincidence

EarthRotationZero, in the SC/Ephem portion of the Core module, finds a Julian date for which the Greenwich
Apparent Sidereal Time (GAST) is zero.

For example

x = EarthRotationZero( JD2000 )
x =

2.4515e+06

gives a Julian Date within a day of JD2000. For this date

GASTime( x )

ans =
7.2978e-09
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You can also find the transformation matrix from ECI to ECR at any time by typing

m = ECIToECIR( jD )

m transforms from ECI to the frame aligned with EF at time jD. This constant offset frame can be used to propagate
equations in the ECIR frame.

19.6 Sun

SunV1, also in SC/Ephem, provides a moderate precision (0.01 deg) sun angle.

uSun = SunV1( jD );
[rA, dec] = U2RADec( uSun )

The second function gives the right ascension and declination for the sun.

19.7 Interfacing to STK

You can interface to STK using the function STKOrbit. STKOrbit allows you to exchange data with STK by
creating an input file for STK.

[err, message] = STKOrbit( fileName, ver, epoch, nPoints, time, position,
velocity, type )

Table 19.5: I/O for STKOrbit

Variable Description
fileName Filename for output. Will be overwritten if it already exists.
ver STK version number (string!)
epoch Beginning date and time: [Y M D H M S]
nPoints Number of orbit data points
time Time in seconds for each data point
position Position data in km (if type = ECF or ECI) or in [degrees,degrees,km] (if type = LLR)
velocity Velocity data in km/sec (if type = ECF or ECI) or [degrees,degrees,km]/sec (if type = LLR)
type ’ECI’,’ECF’,or ’LLR’
err err = 0 means an error occurred
message Error message

19.8 Ground Coverage

Ground coverage is found using this function from OrbitMechanics:

x = GroundCoverage( xECI, jD, d )

where xECI is the ECI state vector [r;v], jD is the Julian date and d is the data structure in which d.fOV.x is
the x axis field-of-view, d.fOV.y is the y-axis field-of-view and d.m transforms from the body frame to the sensor
frame. The sensor is assumed to have its boresight along +z in the sensor frame. If d.m were the identity matrix the
sensor would point along +z in the body frame. For this function, the satellite body frame is assumed to be aligned
with the LVLH frame.

d.e is a 3-by-1 vector with the [x dimension;y dimension;z dimension] of the ellipsoid. If the planet is spherical the
three dimensions are the same.
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19.9 Orbit Propagation API

19.9.1 Batch Runs

You can run PropagateOrbitPlugIn from a script. This allows you to set up large numbers of cases and run
them automatically. OPBatchDemo shows how to set up a batch run.

d = load(’OPDemo.mat’);
d.epoch.dT = 3600;
tag = PropagateOrbitPlugIn( ’initialize’ );

PropagateOrbitPlugIn( ’set data’, tag, d );
PropagateOrbitPlugIn( ’propagate’, tag );
pause
PropagateOrbitPlugIn( ’close plots’, tag );
PropagateOrbitPlugIn( ’quit’, tag );

In the first line a saved data file is loaded. This file was created and saved using the GUI interactively. In the second
the time step is customized. Any field in the data structure may be customized. In the third step the GUI is initialized.
In the fourth the datastructure d is loaded. The orbit is then propagated. Plots are closed after the pause and the final
step is to quit. tag identifies the GUI. Possible commands are listed in Table 19.6.

Table 19.6: PropagateOrbitPlugIn API

Prototype Purpose
tag = PropagateOrbitPlugIn( ’initialize’ ); Initialize the plugin.
PropagateOrbitPlugIn( ’set data’, tag, d ); Set the data in the GUI
PropagateOrbitPlugIn( ’propagate’, tag ); Propagate the orbit.
PropagateOrbitPlugIn( ’close plots’, tag ); Close the plots
PropagateOrbitPlugIn( ’save, tag, fileName ); Save the GUI data.
PropagateOrbitPlugIn( ’save plot data’, tag, fileName ); Save the plot data
PropagateOrbitPlugIn( ’quit’, tag ); Close the GUI.

19.9.2 Data Structure

The data structure d is defined in the following table.

Table 19.7: Input data structure for PropagateOrbitPlugIn
Field SubField Type Description
f Struct Plugin function names and data

thrustFunction String (1,:) Name of the thrust function
aeroFunction String (1,:) Name of the aerodynamics function
solarFunction String (1,:) Name of the solar pressure function
noiseFunction String (1,:) Name of the covariance noise function
densFunction String (1,:) Name of the atmospheric density function
thrustData User defined Data for the users thrust function
aeroData User defined Data for the users aerodynamic function
solarData User defined Data for the users solar pressure function
noiseData User defined Data for the users covariance noise function
densData User defined Data for the users density function
planetaryDisturbancesOn (1,1) 1 turns on planetary disturbances
atmosphere String (1,:) String for atmosphere model name
nZonal (1,1) Number of zonal harmonics
nTesseral (1,1) Number of tesseral harmonics
stopping.condition String (1,:) Stopping condition string
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covariancePropagationOn (1,1) Turns on covariance propagation
q Struct

simpleCovarianceRHSOn (1,1) Simple covariance right-hand-side enabled
propagate String (1,:) Propagation method
mass (1,1) Spacecraft mass
epoch Struct Time epoch

jDEpoch (1,1) Julian date (days)
dT (1,1) Time step (sec)
duration (1,1) Duration (sec)

tol (1,1) Absolute tolerance for ode113
reltol (1,1) Relative tolerance for ode113

19.9.3 Function Inputs

The following table lists all inputs to PropagateOrbitPlugIn.

Table 19.8: Inputs to PropagateOrbitPlugIn
Action Inputs Output Description
initialize None None Tells the GUI to initialize itself.
propagate None None Propagate the orbit
propagate covariance None None Propagate the covariance
atmosphere None None Open the atmosphere GUI
gravity None None Open the gravity GUI
set data Data structure

(see above)
None Provide a data structure to the GUI

get data None GUI data structure Returns the GUI data structure
get results None Plot data Returns the plot data
get r None r(3,:) Returns the position vector array
get v None v(3,:) Returns the velocity vector array
get mass None (1,1) Returns the spacecraft mass
save String (1,:) None Save the data in the GUI
open None None Open a saved file
save plot data String (1,:) None Plot data file name
initialize function None None Initialize the plugin functions
close function String (1,:) None Close the input plugin
j2 None None Set the number of zonal harmonics to 2 and tesseral to 0
j4 None None Set the number of zonal harmonics to 4 and tesseral harmonics to 0
help None None Open the help GUI
quit None None Close the GUI

19.9.4 Function Outputs

The plot outputs for PropagateOrbitPlugIn are given in the following table.

Table 19.9: Plot outputs for PropagateOrbitPlugIn
Plot Data Description Units
x(1:3,:) Position km
x(4:6,:) Velocity km/sec
x(7,:) Mass kg
x(8,:) Geodetic Latitude deg
x(9,:) Longitude deg
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x(10,:) Altitude km
x(11,:) Flight path angle rad
x(12:17,:) Covariance diagonal
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CHAPTER 20

FUEL BUDGETS

This chapter discusses how to generate fuel budgets. These budgets are some of the most important elements of
spacecraft system design.

20.1 Fuel Budget

Computation of fuel budgets is a straightforward bookkeeping exercise. The most important point to remember is
that the fuel consumption of the thrusters is a function of system pressure. Consequently, fuel budgets must be done
chronologically.

FBudget generates fuel budgets. There are four types of maneuvers supported. They are spin precession maneuvers,
spin changes, AKM firings, and stationkeeping maneuvers. You set up each maneuver using the FBudget data
structures as shown in the following example.

Listing 20.1: Fuel Budget: Moment Arms
% You need position vectors and moment arms.
r = [ -0.8 -0.8 -0.8 -0.8 0.8 0.8 0.8 0.8 0.8 -0.8 -0.8 0.8 0.2 -0.2 -0.2 0.2;...

-0.9 -0.8 0.7 0.8 -0.8 -0.8 0.8 0.8 -0.8 -0.9 -0.8 -0.7 -0.8 -0.8 -0.8 -0.8;
0.8 -0.8 -0.8 0.8 0.9 -0.8 -0.8 0.7 0.8 0.8 -0.8 -0.8 0.15 -0.2 -0.2 0.2];

u = [ -1 -1 -1 -1 1 1 1 1 0 0 0 0 0 0 0 0;...
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1;...
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

In the next listing the thruster performance data is collected into data structures.

Listing 20.2: Fuel Budget: Thruster performance data
for k = 1:12

f(k).iSP = [100 100 10]; % See REA.m for use of this array
f(k).thrust = 2.07e-6; % See REA.m for use of this array
f(k).riseTime = 0.016; % In seconds
f(k).fallTime = 0.016;
f(k).u = u(:,k);
f(k).r = r(:,k);
f(k).type = ’liquid’;
f(k).systemID = Odd(k) + 1; % You can have as many fuel systems as you want

end
for k = 13:16

f(k).iSP = [100 250 10];
f(k).thrust = 0.828e-6; % In this case just multiplying this by pressure
f(k).riseTime = 0.016;
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f(k).fallTime = 0.016;
f(k).u = u(:,k);
f(k).r = r(:,k);
f(k).type = ’liquid’;
f(k).systemID = Odd(k) + 1;

end

The next listing has general spacecraft data. This includes details about the thruster system. In this case, there are
two systems (often called half systems) each using liquid propellant thrusters with equal volumes, pressures and
temperatures.

Listing 20.3: Fuel Budget: General spacecraft data
% Assemble general spacecraft data.
x.regulatedPressure = [250 250]*6895;
x.systemTemp = [298 298];
x.systemType = [’liquid’;’liquid’];
x.systemVol = [1.6505e-01 1.6505e-01];
x.systemFuel = [1.1789e+02 1.1789e+02];
x.pressurantMass = [1.8372e-01 1.8372e-01];
x.pressurantR = MolWt2R( 0.004 )*[1 1];
x.dryMass = 9.5514e+02;
x.fuelDensity = [1000 1000];
x.thrusterData = f;
x.controlDT = 1;
k = 0;

The next set of listings define the fuel burning events for the budget. The event structure fields are defined in the
header of FBudget, along with an indication of which events require which data. The definitions are copied below
for reference.

Listing 20.4: Fuel Budget: Event structure fields
% event (:) Event data structure
% event.description (1,:) String describing the event
% event.type (1,:) ’initial’, ’delta-v’, ’delta-h’, ’acs’,’pulses’,
% ’circular’
% event.aCSThruster (1,:) List of ACS thrusters to use <- all
% event.dVThruster (1,:) List of deltaV thrusters to use <- ’delta-V’
% event.dVTotal (1,1) Total delta-V <- ’delta-V’
% event.dTControl (1,1) Control period <- ’delta-V’, ’acs’
% event.burnEff (1,1) Burn efficiency <- ’delta-V’
% event.dHTotal (1,1) Total delta-H <- ’delta-H’
% event.disturbance (3,1) Attitude disturbance <- ’acs’
% event.pulsewidth (1,1) Pulsewidth to be used <- all
% event.nPulses (1,1) Number of pulses <- pulse
% event.duration (1,1) Used for attitude control <- ’acs’
% event.regulated (1,1) 1 if regulated at following level
% event.cM (3,1) Center of mass
% event.circular (1,1) struct(’period’,p,’radius’,r,’duration’,t)
% <- ’circular’

The first event shows the initialization of the arrays.

Listing 20.5: Fuel Budget: Array initialization
% Event 1: Initialization
%------------------------
k = k + 1;
event(k).type = ’initial’;
event(k).description = ’Initial State’;
event(k).aCSThruster = [];
event(k).dVThruster = [];
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event(k).dVTotal = [];
event(k).dHTotal = [];
event(k).disturbance = [];
event(k).pulsewidthACS = 0;
event(k).pulsewidthDV = 0;
event(k).nPulses = [];
event(k).duration = [];
event(k).regulated = 0;
event(k).cM = [0;0;0];

The next shows an entry for a continuous Delta-V burn.

Listing 20.6: Fuel Budget: Continuous delta-v burn
% Event 2: A continuous delta-V burn using different ACS and DV thrusters
%------------------------------------------------------------------------
k = k + 1;
event(k).type = ’delta-v’;
event(k).description = ’Delta V Continuous’;
event(k).aCSThruster = [1 2 3 4 5 6 7 8 9 10 11 12];
event(k).dVThruster = [13 14];
event(k).dVTotal = 100; % Total delta V in m/sec
event(k).dHTotal = [];
event(k).dTControl = 1;
event(k).disturbance = [];
event(k).nPulses = [];
event(k).duration = [];
event(k).regulated = 0; % If not regulated use blowdown curves
event(k).cM = [0;0;0];

The next listing shows the entry for a delta-v burn with off-pulsing.

Listing 20.7: Fuel Budget: Delta-v with off-pulsing
% Event 3: Delta-V off-pulsing some thrusters
%--------------------------------------------
k = k + 1;
event(k).type = ’delta-v’;
event(k).description = ’Delta V Off Pulse’;
event(k).aCSThruster = [1 2 3 4 9 10 11 12];
event(k).dVThruster = [1 2 3 4];
event(k).dVTotal = 100;
event(k).dHTotal = [];
event(k).dTControl = 1;
event(k).nPulses = [];
event(k).duration = [];
event(k).regulated = 0;
event(k).cM = [0;0;0];

The next listing shows an unloading momentum entry.

Listing 20.8: Fuel Budget: Unloading momentum
% Event 4: Unloading momentum
%----------------------------
k = k + 1;
event(k).type = ’delta-h’;
event(k).description = ’Delta H’;
event(k).aCSThruster = [1 2 3 4 5 6 7 8 9 10 11 12];
event(k).dVThruster = [];
event(k).dVTotal = [];
event(k).dHTotal = [1;0;0];
event(k).dTControl = 1;
event(k).disturbance = [];
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event(k).nPulses = [];
event(k).duration = [];
event(k).regulated = 0;
event(k).cM = [0;0;0];

This listing shows firing of the ACS thrusters in response to a disturbance.

Listing 20.9: Fuel Budget: Using ACS thrusters
% Event 5: Using thrusters for ACS
%---------------------------------
k = k + 1;
event(k).type = ’acs’;
event(k).description = ’ACS Disturbance’;
event(k).aCSThruster = [1 2 3 4 5 6 7 8 9 10 11 12];
event(k).dVThruster = [];
event(k).dVTotal = [];
event(k).dHTotal = [];
event(k).dTControl = 1;
event(k).disturbance = [0;1;0];
event(k).nPulses = [];
event(k).duration = 10000;
event(k).regulated = 0;
event(k).cM = [0;0;0];

The next listing shows an example of firing a few pulses.

Listing 20.10: Fuel Budget: Firing a few pulses
% Event 6: Firing a few pulses
%-----------------------------
k = k + 1;
event(k).type = ’pulsed’;
event(k).description = ’Short Pulse’;
event(k).aCSThruster = [1 2];
event(k).dVThruster = [];
event(k).dVTotal = [];
event(k).dHTotal = [];
event(k).disturbance = [];
event(k).nPulses = []; % Won t use any fuel this way
event(k).pulsewidth = 0.05;
event(k).duration = [];
event(k).regulated = 0;
event(k).cM = [0;0;0];

The results for these events are shown in Listing 20.11.

FBudget( event, x ) % Generates the following results

Listing 20.11: Fuel Budget Example, Six Events
TestBudget Propellant budget 19-Sep-1997
Item Description Total Fuel Remaining Fuel Used Pressure ACS Isp DV Isp
1 Initial State 1190.92 117.89 117.89 0.000 0.000 2.4e+06 2.4e+06 0.00 0.00
2 Delta V Continuous 1153.87 99.36 99.36 18.525 8.525 2.4e+06 2.4e+06 100.02 360.00
3 Delta V Off Pulse 1099.18 72.02 72.02 27.346 27.346 1.7e+06 1.7e+06 100.00 210.00
4 Delta H 1099.18 72.02 72.02 0.001 0.001 1.2e+06 1.2e+06 100.41 0.00
5 ACS Disturbance 1087.45 66.16 66.16 5.862 5.862 1.2e+06 1.2e+06 100.39 0.00
6 Short Pulse 1087.45 66.16 66.16 0.000 0.000 1.2e+06 1.2e+06 100.50 0.00

For east/west stationkeeping the delta V required because of longitude drift, due to the earths tesseral gravitational
harmonics is computed by
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[dVEW,dTEW] = DVLDrift( box, scLon );

where the first number is the size of the stationkeeping box in degrees and the second is the spacecraft longitude.
DVLDrift outputs the delta V required per maneuver and the time between maneuvers. For north/south stationkeep-
ing the corresponding function is

[dVNS,dTNS] = DVIDrift( box, year );

where the second argument is the year for which the calculation is done. The inclination drift is a function of the
earth/moon geometry which is included in DVIDrift.
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CHAPTER 21

ORBIT REFERENCES

This chapter gives selected orbit resources.

21.1 Orbits

Excellent applied navigation and interesting mathematical approaches to orbit dynamics. Prof. Battin gives extensive
information on the Apollo navigation system.

Battin, R. H. “An Introduction to the Mathematics and Methods of Astrodynamics.” AIAA Education
Series.

The most comprehensive and up-to-date book on applied orbit dynamics.

Vallado, David. A. and W. D. McClain. Fundamentals of Astrodynamics and Applications, Second Edi-
tion. Microcosm Press, El Segundo, CA, 2001.

A good introduction with many physical insights.

Wiesel, W. E. Spaceflight Dynamics. McGraw-Hill, 1989.

21.2 Web Sites

Gravity models have been available at

http://cddis.nasa.gov/926/egm96/

http://www.iges.polimi.it/pagine/services/repo/repo model.asp

JPL solar systems dynamics information, including the Horizons ephemeris tool and astrodynamics constants, is avail-
able at

179



21.2. WEB SITES CHAPTER 21. ORBIT REFERENCES

http://ssd.jpl.nasa.gov/
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SUBSYSTEMS ANALYSIS
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CHAPTER 22

IMAGING

This chapter gives some examples of functions in the Imaging module.

22.1 ImageMatching

ImageMatching has the Canny Edge Detection algorithm, image derivative and a function for fitting a circle to points
in an image. Figure 22.1shows how CannyEnhancer enhances edges.

Figure 22.1: CannyEnhancer demo
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22.2 ImageProcessing

This folder includes utilities for image processing

1. GaussianImageFilter

2. IndexedImageToRGB

3. MedianImageFilter

For example GaussianImageFilter.
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Figure 22.2: GaussianImageFilter demo

The first image shows the original, the second the filtered and the third the difference. This function handles images
of the form a(n,m,3). The matrices must be doubles.
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LINK MODULE

The link module provides basic functions for computing link margins. Link margins are the signal to noise ratios for
communication links between spacecraft and between spacecraft and the ground. The module is divided into utilities,
design functions, and RF and optical link analysis functions. The list of folders is shown below.

>> help Link
PSS Toolbox Folder Link
Version 8.0 03-Dec-2009

Directories:
Coverage
Demos
Demos/Optical
Demos/RF
Help
Ladar
LinkDesign
LinkUtilities
Optical
RF
Radar

23.1 Link Utilities

Link utilities are for conversions and other basic link calculations. For the complete listing type

>> help LinkUtilities

and you will get the list of functions with a help comment.

>> help LinkUtilities

Link/LinkUtilities

B
BEP - Computes the bit error probability given C/N

and the bit rate.

C
CNRComp - Compute the carrier to noise ratio.
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ConstellationGroundContact - Compute the number of contacts for a
constellation with ground users.

ConstellationMaxDistance - Compute maximum distances between satellites
in a constellation.

D
DBPower - Power conversion to decibels. dB = 20 log10(s

).
DBSignal - Signal conversion to decibels. dB = 10 log10(

s).
DBSignalToPower - Convert decibels to power.
DBWToNW - Convert dBW (decibels-Watts) to nanowatts.
DBWToPW - Convert dBW to picowatts.
DataRate - Computes communications sytems data rates
DopplerBlind - Finds Doppler blind speeds.
DopplerShift - Doppler shift

F
FPD - Function called by fzero to compute the

carrier to noise ratio.
FPFA - Right hand side for probability of false

alarm computation.
Frequency - Outputs the frequencies for specified bands

of electromagnetic radiation.
FrequencyToWavelength - Converts frequency to wavelength.

M
ModulationSpectralEfficiency - Spectral efficiency of different modulation

schemes
MultiBEPPlot - Computes and plots multiple bit error rates

on the same plot.

P
PeriodToSemimajorAxis - Computes semi-major axis from orbital period
ProbDetection - Probability of detection for a diffuse target

.

S
Shannon - The Shannon information theorem relating S/N

and C/B.

T
TToPower - Convert temperature to power.

W
Wavelength - Outputs the wavelengths for bands of

electromagnetic radiation.
WavelengthToFrequency - Converts wavelength to frequency.

Y
YBComp - yB computation used as part of the

probability of detection algorithm.

Folders named LinkUtilities

For example to get nanowatts from dB,

>> power = DBWToNW(-106)
power =

2.5119e-02
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or picowatts

>> power = DBWToPW(-106)
power =

2.5119e+01

If you type Shannon you get Figure 23.1 (a demo of the Shannon function). This relates the information content to
the signal to noise ratio.

Figure 23.1: Shannon demo
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23.2 Optical

Two functions are available for optical calculation. The first, OpticalBackgroundNoise, computes the optical
background noise for

• Solar

• Lunar

• Mercury

• Venus

• Mars

• Jupiter

• Saturn

• Sunlit clouds

• Sunlit snow and ice

• Starfield

The second, OpticalReceiverNoiseDensity, computes optical receiver noise density for coherent and direct
receivers.
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23.3 RF

The RF functions compute various losses and noise temperatures. For example typing

LossAtmosphericGas

gives you path losses due to atmospheric gas, see Figure 23.2. Other loss functions include LossFreeSpace and
LossPrecipitation. Typing

Figure 23.2: Atmospheric Gas Loss
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TSky

gives you a sky temperature demo, see Figure 23.3 on the facing page. You can also get temperatures for the moon,
sun, receiver, attenuator, etc.

You can compute losses and noise inputs using a variety of functions in the toolbox. All of these tools are integrated
into the LinkAnalysisTool. The built-in demo of this function is shown below and the results in Figure 23.4 on
page 190.

% Space link
%-----------
spaceLink.theta3DB = 2; % (deg)
spaceLink.fIllumination = 70; % (deg)
spaceLink.effTransmit = 0.55;
spaceLink.powerTransmit = 10; % dbW
spaceLink.lossEdge = 3; % dB
spaceLink.lossTransmitterFeed = 0.5;
spaceLink.frequency = 12;
spaceLink.diameterAperture = 1;
spaceLink.thetaDepointing = 0.1; % (deg)

% Ground link
%------------
groundLink.antenna.type = ’circularAperture’;
groundLink.antenna.area = pi*2ˆ2/4;
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Figure 23.3: Sky temperature

TSky

0 10 20 30 40 50 60
10

0

10
1

10
2

10
3

B
rig

ht
ne

ss
 T

em
pe

ra
tu

re
 (

de
g−

K
)

Frequency (GHz)

 

 

E = 0.0 deg
E = 5.0 deg
E = 10.0 deg
E = 20.0 deg
E = 30.0 deg
E = 60.0 deg
E = 90.0 deg

groundLink.latitude = 45;
groundLink.longitude = 0;
groundLink.altitude = 0;
groundLink.horizonAngle = 0;
groundLink.tGround = 45; % Ambient ground temperature
groundLink.tAttenuatorAmbient = 290; % Ambient attenuator temperature
groundLink.lossAttenuator = 1; % Attenuator loss (dB)
groundLink.lossFeeder = 0.5;
groundLink.climateZone = ’e’;
groundLink.precipitationFractionOfTime = 0.01;
groundLink.polarizationTiltAngle = 0;

% Orbit
%------
orbit.el = [42164 0 0 0 0 0];
orbit.jD = DateStringToJD( ’11/04/2004’ );
orbit.t = linspace(0,Period(orbit.el(1)));

LinkAnalysisTool( spaceLink, groundLink, orbit );

23.4 Downlink Analysis Example

This example shows how to do a downlink analysis. The reference is Maral, G. and M. Bousquet. Satellite Communi-
cations Systems, Third Edition. John Wiley (1998). See this and more examples in LinkExamples.m.

%-------------------------------------------------------------------------------
% Example 2 pp. 24-25
%-------------------------------------------------------------------------------
fD = 12; % GHz
pT = DBSignal(10); % dBW
r = 40000; % km
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Figure 23.4: Results of LinkAnalysisTool

theta3DB = 2;
effT = 0.55;
effR = 0.6;
dR = 4;
fIllumination = 70;

gT = Gain3dB( theta3DB, fIllumination, effT );
eIRPSL = pT + gT;
gR = AntennaGain(struct(’type’,’circular aperture’,’area’,pi*dRˆ2/4,’

eff’,effR),fD);
lFS = LossFreeSpace( fD, r );
pR = eIRPSL - lFS + gR;

fprintf(’\n\n2.3.2 Example 2: The Downlink\n-----------------------------’)
fprintf(’Gain Transmit Antenna = %10.2f (dBW)\n’,gT);
fprintf(’EIRP SL = %10.2f (dBW)\n’,eIRPSL);
fprintf(’Free Space Loss = %10.2f (dB\n)’,lFS);
fprintf(’Gain Receive Antenna = %10.2f (dB)\n’,gR);
fprintf(’Power Received = %10.2f (dBW)\n’,pR);
fprintf(’Power Received = %10.2f (pW)\n’,DBWToPW(pR));

The only loss is the free space loss which is due to the 1/r2 dissipation of the radio waves with distance in free space.
The result of this example is

2.3.2 Example 2: The Downlink
-----------------------------
Gain Transmit Antenna = 38.23 (dBW)
EIRP SL = 48.23 (dBW)
Free Space Loss = 206.07 (dB)
Gain Receive Antenna = 51.81 (dB)
Power Received = -106.03 (dBW)
Power Received = 24.94 (pW)

With a distance of 40,000 km the free space loss dominates the losses. Only 24.94 picowatts is delivered to the receiver.
This analysis ignores other losses such as receiver loss, loss due to atmosphere and loss due to rain. In addition it is
not a complete example since we really need to know the signal to noise ratio at the receiver to determine how much
information we can transmit.
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23.5 LADAR

Two main functions are available for analyzing LADAR systems. OpticalLinkBudget is used to compute link
budgets for optical systems. The following example shows how to assign values to the data structure. Note that losses
are from 0 to 1 not dB. 1 is lossless and 0 is infinite losses.

disp(’Pluto Mission’);
d.wavelength = 532e-9; % nd:YLF (Neodymium doped: Ytterbium Lithium

Floride)
d.transmitApertureDiameter = 0.2; % M
d.thetaOffset = 0; % No offset
d.transmitPower = 100; % W
d.wavefrontError = 0; % Loss is exp(-2*pi*error/wavelength)
d.range = 41*149.6e9; % 41 AU
d.receiverLoss = 1; % 0 to 1, 1 means no loss
d.receiverPointingLoss = 1; % 0 to 1, 1 means no loss
d.receiveApertureDiameter = 1; % Telescope diameter (m)
OpticalLinkBudget( d );

This example results in for a total link loss of -292.7 dB. Compare this with the results given in the previous section!

Pluto Mission
Transmit Power = 100.0000 W
Wavelength = 532.0000 nm
Theta Divergence = 3.3868e-06 rad
Beamwidth at Range = 2.0773e+07 m
Pointing Loss = 1.0000e+00
Transmit Antenna Gain = 1.3949e+12
Range Loss = 4.7640e-41
Wavefront Loss = 1.0000e+00
Receive Antenna Gain = 3.4872e+13
Receiver Pointing Loss = 1.0000e+00
Receiver Loss = 1.0000e+00
Receive Power = 2.3173e-13 W
Losses are 0 to 1. 1 means no loss

The transmit power can be computed using LADARTransmitPower.

d.b = 30e3;
d.n = 500;
d.etaM = 0.5;
d.d = 0.2;
d.etaR = 0.7;
d.theta = 90e-6;
d.k = 2;
d.etaT = 0.7;
d.etaQ = 0.8;
d.etaE = 0.7;
d.pFA = 1e-6;
d.pD = 1 - [1e-4 1e-5 1e-6];
d.xC = 1;
d.lambda = 11.149e-6;
d.r = linspace(1,400)*1000;
d.tA = 1;
d.thetaT = 0;
d.x = d.r/1000;
d.xLabel = ’Range (km)’;
LADARTransmitPower( d );

This function generates 3 figures shown in Figure 23.5 on the following page.
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Figure 23.5: Results of LADARTransmitPower

23.6 RADAR

There are many tools available for radar analysis. The radar equation may be computed in various forms by:

RadarEquationPulse.m
RadarEquationSN.m
RadarEquation.m

Most have demos. For example if you type RadarEquation you will see Figure 23.6.

Figure 23.6: Results of RadarEquation

Type RadarCrosssection and you will get the radar crosssections of a plate and sphere.
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Figure 23.7: Results of RadarCrosssection
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CHAPTER 24

POWER

This chapter discusses how to generate use the power module.

The Source folder provides functions for computing parameters for solar cells.

BandGap computes the band gap for solar cells as a function of temperature, as shown in Figure 24.1.

Figure 24.1: Band gap
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SolarCell computes the I-V curves for solar cells as in Figure 24.2 on the next page.

SolarCellEff computes the efficiency for solar cells as in Figure 24.3 on the following page.
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Figure 24.2: Solar cell I-V curves
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Figure 24.3: Solar cell efficiency
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CHAPTER 25

PROPULSION MODULE

This chapter presents the propulsion module.

25.1 Module Overview

The propulsion module has several broad categories

• Chemical propulsion

• Electric propulsion

• Multistage rocket analysis

• Rocket

The chemical category includes functions for modeling and designing blowdown systems and functions for analyzing
the chemistry or chemical rockets. The electric propulsion category includes functions for analyzing and optimizing
electric propulsion systems. The multistage rocket analysis functions are for launch vehicle design and the rocket
functions are functions the apply to all types of rockets.

The complete list of folders is shown below.

>> help Propulsion
PSS Toolbox Folder Propulsion
Version 2019.1 23-Dec-2019

Directories:
Chemical
Demos
Demos/Chemical
Demos/Electric
Demos/Utilities
Electric
Gas
MultiStage
Nuclear
Rocket
Utilities

197



25.2. SOLID ROCKET MOTOR CHAPTER 25. PROPULSION MODULE

25.2 Solid Rocket Motor

TSolid is an example of a solid motor simulation. The function SolidR, which models the dynamics of the burning
motor, is numerically integrated in a loop. See Figure 25.1 for the demo results.

Figure 25.1: Solid motor firing
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25.3 Blowdown Curve

Designing a blowdown system is of critical importance for most satellites. You need to specify the mass of fuel, initial
pressure and final pressure. The pressure are set by the thrusters. The following code designs a blowdown system.

Nm2ToPSI = Constant(’N/mˆ2 to PSI’);
KgToLbF = Constant(’Kg to Lb Force’);
molWt = 0.004;
rPress = MolWt2R(molWt);
mFuel = 0:200;
rhoFuel = 1000;
T = 293;
vTank = 0.5;
mPress = 1.2;
p = BloDown(mPress,rhoFuel,vTank,rPress,T,mFuel);
Plot2D(mFuel*KgToLbF,p*Nm2ToPSI,’Mass Fuel (lb)’,’Pressure (psi)’)

See Figure 25.2 on the facing page. With no fuel, the system pressure is 210 psi. With the full fuel load the pressure
is 350 psi.
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Figure 25.2: Blowdown curve
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25.4 Electric propulsion

Type ElectricPropulsion and you will get the plot in Figure 25.3. This shows the mass of an electrically
propelled vehicle as a function of exhaust velocity. The optimal exhaust velocity is surprisingly low.

Figure 25.3: Optimal electric vehicle
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The vehicle characteristics are printed in the MATLAB command window:
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mP: 50000
thrust: 15000

dV: 50000
pR: 20000
sR: 1.0000e-01

eff: 6.0000e-01
uE: 1.0381e+05

power: 1.2976e+09
mR: 6.4880e+04
mF: 7.5771e+04
mS: 7.5771e+03
mD: 1.2246e+05
mT: 1.9823e+05

mDot: 1.4450e-01

25.5 Launch vehicle analysis

Type TSTODemo for a simulation of a two-stage-to-orbit horizontal takeoff/horizontal landing launch vehicle. The
first stage is an air-breathing vehicle powered by two turbofan and two hydrogen-fueled ramjet engines. The transition
from turbofan to ramjet power occurs at Mach 1.5. The second stage is powered by a hydrogen rocket. Type help
TSTODemo for a description of the mission. The flight path of both stages and also the staging conditions have been
optimized to maximize the mass to orbit. The optimization has been previously performed with OptimizeTSTO,
which requires MATLAB’s Optimization Toolbox. Figure 25.4 shows the results of the demo, in which a payload of
593 kg is delivered to orbit.

Figure 25.4: Two-State-to-Orbit Simulation
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CHAPTER 26

THERMAL MODULE

This chapter introduces the thermal analysis module.

26.1 Module Overview

The thermal module provides basic functions for performing thermal analysis of spacecraft. It is not meant to be a
substitute for packages such as TRASYS or SINDA. Rather, it is useful to help GN&C analysts uncover potential
thermal problems caused by GN&C activity.

There are two classes of functions. One class is the properties functions. The other is the thermal analysis functions.
The complete list of folders is shown below.

>> help Thermal

CubeSat/Demos/Thermal

C
CubeSatFaceTemperaturesDemo - Demonstrate temperatures of faces of a CubeSat

I
IsothermalCubeSatDemo - Isothermal satellite demo

CubeSat/Thermal

A
AddThermalConductivity - Add a thermally conductive path between cubesat

faces

I
IsothermalCubeSatSim - An isothermal CubeSat simulation using Euler

integration.

R
RHSIsothermalCubeSat - An isothermal CubeSat amodel right-hand-side.

PSS Toolbox Folder Thermal
Version 2019.1 23-Dec-2019

Directories:
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Brayton
Demos
Demos/ThermalAnalysis
Demos/ThermalControl
Demos/ThermalGraphics
HeatExchanger
ThermalAnalysis
ThermalData
ThermalGraphics
ThermalProperties

Folders named Thermal ThermalProperties

26.2 Thermal Properties

These functions generate information about the thermal properties of objects. For example typing WiensDsp com-
putes the peak black body wavelength as a function of temperature, as shown in Figure 26.1.

Figure 26.1: Black body wavelength as a function of temperatures
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AbsDa computes the absorbed heat as a function of absorptivity and incoming flux. See Figure 26.2 on the facing
page. Other functions compute the temperate of simple geometric objects under incoming radiation.

Another function is PlanckL which gives Planck’s Law. See Figure 26.3 on the next page.

26.3 Thermal Analysis

There are two thermal analysis functions. One is Thermnet which generates a state space system for a general
thermal system including radiation heat transfer. This is done by analytically linearizing the equations about a nominal
temperature. You can specify any connections between nodes and declare external nodes for heat flux into the system.
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Figure 26.2: AbsDa demo
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Figure 26.3: Plancks Law
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The second function is ThermalEquilibrium. This function computes the thermal equilibrium for a system
governed by the static equation

lT 4 + kT = bq (26.1)

using MATLAB’s sparse matrix functions.

26.3.1 Thermnet Example

Thermnet creates a set of first order differential equations to model a thermal circuit. Inputs are the nodal masses,
a conductive node map, a radiative node map, an input node map and an output node map. The output is a set of first
order differential equations in the form

Ṫ = aT + bq (26.2)
y = cT

where T is the nodal temperature, q is the thermal input and y is the vector of measurements.

A node map has one row for each node and as many columns as are necessary to specify the connections. Each node
map is accompanied by a coefficient map that gives either the conductive or radiative heat transfer coefficients for the
node pair. Thermnet will automatically make the a matrix symmetric for conduction. Thermnet will warn you if
you entered a coefficient twice and the two were different. You only have to specify the connection in one direction.

Assume that we want to model the system shown in Figure 26.4.

Figure 26.4: Thermal network

External flux is coming in on node 1 and measurements are taken on node 3 and 2. There is conduction heat transfer
between all nodes, but radiation transfer only between nodes 3 and 2, as indicated by the zigzag line.

Assume that the thermal mass of each node is one and that the nominal temperature is 300 deg-K. Then

massNode = [1 1 1];
tNominal = [300 300 300];

The input node is 1 so

inputNodeMap = 1;

and the output nodes are 2 and 3

Spacecraft Control Toolbox 204



CHAPTER 26. THERMAL MODULE 26.3. THERMAL ANALYSIS

outputNodeMap = [2 3];

There is one row per node in the conduction node map. All nodes are connected to all other nodes so the conduction
node map is

conductionNodeMap = [2 3;1 3;1 2];

and the radiation node map is

radiationNodeMap = [inf;3;2];

The first node radiates to infinity. If there are different numbers of connections per node, then fill in zeros to make the
matrix full. The coefficients are

conductionCoeff = [1 2;1 2;2 2];
radiationCoeff = [1;1;1]*0.25e-6

Again, each row is for a node and the column corresponds to the index in the node map. For example, the conduction
coefficient between node 1 and 2 is 1. Type

[a, b, c] = Thermnet( massNode,...
conductionNodeMap, conductionCoeff,...
inputNodeMap, outputNodeMap,...
radiationNodeMap, radiationCoeff,...
tNominal )

and the result is

a =
-30 1 2
1 -30 29
2 29 -31

b =
1
0
0

c =
0 1 0
0 0 1

26.3.2 Thermal Equilibrium Example

The simplest case is two nodes connected by a conductor. Heat is coming through node 1. Both nodes are radiating to
free space. k is the linear term coefficient and l is the quartic coefficient. b is the input matrix. The input flux q is
set to the typical value of the solar flux at the Earth. The input node temperatures t are guesses or prior values. The
default number of iterations is 40 and the default tolerance is MATLAB’s eps parameter (2.2204e-16).

d.k = 10*[1 -1;-1 1];
d.l = 5.67e-8*[1 0;0 1];
q = 1358;
t = [300;300];
d.b = [1;0];

[t, delta] = ThermalEquilibrium( d, q, t )

t =
3.5236e+02
3.0396e+02

delta =
8.5508e-16

As expected, node 1 is hotter than node 2, by about 50 degrees. This is a good model for a solar array.
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26.3.3 Thermal Imaging

SCThermalDemo demonstrates thermal imaging code. The script draws a view of the spacecraft as seen in “natural”
lighting and then draws one which shows an image as function of temperature. Figure 26.5 shows the four windows
that are generated.

Figure 26.5: Thermal imaging demo

This simulation employs the model generated in BuildSCModelForImaging which is a simple spacecraft model.

g = load(’SCForImaging’);

Two different cameras are used. SpaceCamera shows the spacecraft in solar lighting. In figure ambient lighting
is set high so that it is clearly visible. ThermalImager generates the thermal color data. This script employs the
standard PSS CAD model format with the fields for position and quaternion set in the script.

% CAD body structure
%-------------------
g.body(1).bHinge.q = QPose(qLVLH);
g.body(2).bHinge.angle = theta + pi;
g.body(3).bHinge.angle = theta + pi;
g.rECI = rECI(:,k);
g.qLVLH = qLVLH;

While the script is running you can end it and plot all temperatures by pushing the plot button.

Spacecraft Control Toolbox 206



CHAPTER 26. THERMAL MODULE 26.3. THERMAL ANALYSIS

Figure 26.6: Thermal imaging demo temperature plot
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ATTITUDE AND ORBIT ESTIMATION
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CHAPTER 27

INTRODUCTION

27.1 Overview

The Estimation module contains software for developing estimation algorithms. The algorithms can be used to solve
any estimation problem. Particular technologies included are

1. Fixed Gain Kalman Filters

2. Variable Gain Kalman Filters

3. Extended Kalman Filters

4. Unscented Kalman Filters

5. Fault Detection

Topic areas discussed in this part of the guide are

1. Recursive attitude determination

2. Recursive orbit determination

3. Stellar attitude determination

This guide covers the basics of operating the software. Estimation theory is covered in the accompanying book,
Spacecraft Attitude and Orbit Control.
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CHAPTER 28

GENERAL ESTIMATION

28.1 Introduction

This module focuses on recursive estimation. Recursive estimation is simply taking a measurement and using it to
update an existing estimate of the state of the system. The measurement need not be a state, but for all states to be
observed the measurement must be related to the states or derivatives of the states.

In this module, recursive estimators can be divided into six classes:

1. Fixed gain estimators

2. Variable gain estimators for linear systems

3. Variable gain estimators for nonlinear systems in which the plant (the state dynamics) are linearized about the
current state and propagated as a linear system. This type of system is used for attitude estimation. This is also
called the Extended Kalman Filter.

4. Variable gain estimators for nonlinear systems in which the plant is numerically integrated. This type of system
is used for orbit estimation. This is also called the Continuous Discrete Extended Kalman Filter.

5. Unscented Kalman Filters. These filters compute multiple states and covariances for each in effect computing
the statistics online.

This chapter will discuss estimation in general with examples from attitude and orbit estimation.

28.2 Fixed Gain Estimators

Fixed gain estimators are written in the form

xk+1 = axk + buk + k(y − cxk) (28.1)

where xk is the state vector at step k, a is the state transition matrix, b is the input matrix, uk is the input vector, y is
the measurement vector and c is the measurement matrix that relates the states to the measurements.

The gain matrix, k may be computed in many different ways. Note that this, in contrast to a conventional noise filter,
requires an estimate of the inputs. However, the filter returns the vector of all observable states which is needed for
linear quadratic controllers.
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This kind of estimator can be designed using the toolbox function QCE, for continuous systems, and DQCE for discrete
systems. If the former is used, the filter must be converted to discrete time in a second step. If the latter is used you
must be careful that the filter state matrix is balanced and well-conditioned.

An interesting example is given in KalmanFilterDemo in which two angle measurements are available for single
degree of freedom case. One of the states is the unknown misalignment between the two sensors. Figure 28.1 shows
the covariance for this problem.

Figure 28.1: Fixed gain Kalman filter
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28.3 Variable Gain Estimators

Two routines are available for variable gain estimators. These are KFilter for conventional Kalman filters and
UDKalmanFilter, for filters in which the plant matrix is formulated in Upper Diagonal (UD) form. The latter has
better numerical properties. Both filters are demonstrated for double integrator plant in the demo UDKFDemo. The
results are compared in Figure 28.2 on the next page.

As expected with double precision arithmetic both filters produce the same result. With single precision arithmetic
the UD form should be better results. Note that KFilter eliminates the problem of instabilities due to asymmetric
covariance matrices by forcing it to be symmetric each step.

28.4 Extended Kalman Filter

The extended Kalman Filter is used for attitude determination and many other applications. In an extended Kalman
filter the state transition matrix and measurement matrix is linearized about the current estimated state. This is in
contrast to the linearized Kalman Filter in which the measurement and state transition matrices are linearized about
a predetermined state or state trajectory. In the context of attitude determination, attitude measurements are unit
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Figure 28.2: UD filter
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vector measurements. Since a unit vectors magnitude is 1 there are only 2 independent quantities. Thus a unit vector
provides only a two-axis measurement. Since complete attitude knowledge requires at least 3-measurements a multiple
unit vector measurements need to be used. Sources for measurements are

• Sun

• Planets

• Moon

• Magnetic field

• Stars

• Features on a planetary surface

In each case a reference catalog for the object is maintained in the software. The first four provide unambiguous
references. However, stars and planetary features need to be identified. The next chapter goes into stellar attitude
determination in great detail. The abstracting of all attitude measurements into unit vectors in the toolbox makes it
possible to have a unified approach to attitude determination. There are two approaches to the plant model. One is to
run gyros all the time as model only the gyro noise. This approach is used on high precision pointing spacecraft. The
other approach is to model the dynamics of the spacecraft. This approach requires a reasonable plant model. If the
spacecraft is under closed loop control, a low order model can be extracted from the closed loop dynamics and used
when control is active. Otherwise it is necessary to accurately model the spacecraft dynamics, including all control
inputs.

Two examples are given in this module, SunMagAttDet used in MagSimWithEstimator, and SunEarthADSim.
The first combines sun and magnetic field measurements and the latter, sun and earth measurements. Another demo,
KFSunAndEarthTest2 compares different types of sensors.
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28.5 Continuous Discrete Extended Kalman Filter

28.5.1 Introduction

The script CDKFDemo demonstrates the use of a Continuous Discrete Kalman Filter with a nonlinear spring model,
and a nonlinear position measurement. The first plot in Figure 28.3 shows that the estimate converges to the true value
of the spring position less a bias. The second shows the noisy measurement.

Figure 28.3: Continuous discrete Kalman filter
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28.5.2 Orbit Determination

The orbit determination system used in this module assumes that all measurements used for orbit determination are
range measurements. These can be from GPS satellites or ground stations. Both range and range rate are assumed
to be available. One measurement gives enough information to estimate position and velocity along a single axis. At
least three measurements are needed for a position fix. The filter incorporates each measurement as it arrives and
propagates the orbit between measurements by numerically integrating the orbital equations of motion.

An orbit estimator is demonstrated in the script OrbitKalmanFilter. The clock error covariance is shown in
Figure 28.4 on the next page.

28.6 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is able to achieve greater estimation performance than the Extended Kalman
Filter (EKF) through the use of the unscented transformation (UT). The UT allows the UKF to capture first and second
order terms of the nonlinear system. Instead of just propagating the state, the filter propagates the state and additional
sigma points which are the states plus the square roots of rows or columns of the covariance matrix. Thus the state
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Figure 28.4: Clock error covariance for an orbit Kalman Filter
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and the state plus a standard deviation are propagated. This captures the uncertainty in the state. It is not necessary to
numerically integrate the covariance matrix.

Unscented Kalman filters are discussed in more detail in Chapter 30.
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CHAPTER 29

STELLAR ATTITUDE DETERMINATION

29.1 Introduction

This chapter describes how to use the stellar attitude determination routines in the Estimation module to develop atti-
tude determination systems for your applications. The process of stellar attitude determination is shown in Figure 29.1
on the following page.

A simulation generates an ECI to body attitude quaternion and body rates. These are used for attitude determination.
The body rates are only needed if the attitude determination system is gyro based. That means the model used by the
filter is the model of the gyro, not of the spacecraft.

The simulated quaternion determines the pointing direction. If you want to test star centroiding you need a catalog of
star images that cover the entire sky. For many purposes you can bypass that step and pass the measured unit vectors
from the pinhole camera directly to the star identification software. At that point the pyramid algorithm, that uses four
stars at a time, is used to determine which stars are in the field-of-view. This information is passed to the Kalman filter
or least squares algorithm to determine the attitude.

29.2 Star Catalogs

The toolbox includes the catalogs given in Table 29.1.

Table 29.1: Star catalog
Catalog Number of Stars Minimal Visual Magnitude Description
Hipparcos 118218 14 Stars measured by the Hipparcos
FK5 1536 8.35 Standard star catalog
FK5 Polar 14 7.17 Polar stars from FK5
FK5 Short 768 7.75 Subset of FK5

You load a catalog by typing:

Listing: Catalog
1 starCatalog = LoadCatalog( ’FK5 Short’, ’all’ )
2

3 starCatalog =
4 name1: [768x8 char ]
5 name2: [768x8 char ]
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Figure 29.1: Stellar attitude determination process.
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6 name3: [768x8 char ]
7 rA: [ 1x768 double]
8 dec: [ 1x768 double]
9 pMRA: [ 1x768 double]

10 pMDec: [ 1x768 double]
11 parallax: [ 1x768 double]
12 rV: [ 1x768 double]
13 vM: [ 1x768 double]

’all’ may be replaced by a maximum visual magnitude which is determined by the sensitivity of the star camera
that you plan to use in your application. If you type

LoadCatalog

you will get the default Hipparcos catalog with stars brighter than visual magnitude 6. With no outputs, Figure 29.2 is
generated.

Table 29.2: Star catalogs
Catalog Number of Stars Minimum visual magnitude Description
Hipparcos 118218 14 Stars measured by the Hipparcos satellite.
FK5 1536 8.35 Standard star catalog.
FK5 Polar 14 7.17 Polar stars from FK5.
FK5 Short 768 7.7500 Subset of FK5.

Figure 29.2: LoadCatalog default
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The red mark shows the selected visual magnitude. The upper picture shows the star map. After generating a catalog
you need to generate a dot product catalog. The dot products are used in the star identification procedures. This is
done using StarDataGeneration,

d = StarDataGeneration( starCatalog, fieldOfView, angularResolution )

where starCatalog is the data structure generated above, fieldOfView is the field-of-view in radians and
angularResolution is the minimum resolvable angle.

The data structure d has several fields. They are given in the following table. nearMatrix is a 3-by-m matrix with
dot products for all stars and their neighbors within the fieldOfView of the camera. That is, if a star is in the center
of the field-of-view, it gives dot products for all stars that it can see. fieldOfView should be chosen as in illustration
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in Figure 29.3. The fieldOfView should circumscribe the sensing element. StarDataGeneration does not

Figure 29.3: FOV determination

fOV

Sensing Element

X

store duplicate pairs. Once you have run StarDataGeneration you can save the results in a mat file and use that.
Unless you change the star catalog, dPTol or fOV there is no reason to rerun the function.

Table 29.3: StarDataGeneration output fields
Field Size Units or Type Description
starMatrix (4,:) [intensity;rad;rad;rad] An array with intensity and unit vectors for all stars in star

catalog.
nearMatrix (3,m) [dot product;star 1;star 2] The first row is the dot product and the next two rows are the

two stars corresponding to the dot product pair.
starCatalog (1,1) Data structure The reduced star catalog.
angularResolution (1,1) rad The input angular resolution.
fieldOfView (1,1) rad The input field of view fOV Sensing element .

29.3 Generating Star Data

There are two functions that you can use to generate star data. One, PixelMapCentroid, generates star data from
input images. The second, PinholeStarCamera, generates star data from a star catalog. The latter is useful for
simulation. Both output the same data structure shown in Table 29.4.

Table 29.4: StarMeasurement data structure

Name Size Units or Type Description
pixelLocation (2,m) pixels The star centroid in pixels
intensity (2,m) intensity The intensity of the star

29.3.1 PixelMapCentroid

PixelMapCentroid is invoked with the call

starMeasurement = PixelMapCentroid( pixelMap, threshold, show )
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pixelMap may be a pixel map, a string with the name of an image file, or an empty matrix in which case the function
brings up a file selection dialog. threshold is from 0 to 1 and tells the function to only include stars whose intensity is
that fraction of the maximum intensity measured. Any argument for show will generate a set of plots.

You can generate a pixel map by typing

pixelMap = double(imread( fileName ) );

where fileName is the name of an image file. See imread for more information. Doing this outside of
PixelMapCentroid can save time if you want to experiment with different thresholds.

29.3.2 PinholeStarCamera

PinholeStarCamera is invoked with the call

[starMeasurement, camera] = PinholeStarCamera( bCatalogToCamera, camera,
starCatalog, drawImage );

starCatalog is the star catalog data structure generated by LoadCatalog. camera is the camera data structure.
The fields in the camera data structure are, wX, the pixel width in x, wY the pixel width in y and fScale which can
be found from

f = ComputePixelMapScale( wX, xFieldOfView )

Any value for drawImage cause an image to be drawn.

29.4 Centroiding

The first step in star identification is to take the pixel map from the CCD camera and to identify stars and compute
centroids. This can be done with the function

PixelMapCentroid

If you just type in the above name in a MATLAB command window and then select the file “StarFieldDemo.jpg” you
will get the display shown in Figure 29.4 on the next page.

12 objects are identified. It is important to set the minimum tolerance appropriately. Every pixel will have some finite
value due to dark current and noise. If the minimum tolerance is set too low these pixels will be identified as stars. If
this is combined with relatively low resolutions, it may result in misidentified stars.

Another approach is StarCentroidCOM. This finds the centroid given intensities on n pixels and their coordinates
using the center of mass method. The center of mass will have larger errors if the width of the region of interest goes
outside the pixel mask. Generally, star measurements on the edge will not be reliable due to optical errors so should
be discarded if you have enough stars that for than n pixels from the edges. Figure 29.5 on page 225 the result from
the built-in demo.

>> StarCentroidCOM

Measured Centroids (microns)
70.0000 90.0000 12665.3031
167.8630 386.0009 14374.9016
250.2159 230.0000 19686.0882
359.9821 1240.1813 37047.1646
383.9552 321.9790 19828.4600
530.2069 881.9847 29506.0417
879.9857 1041.9738 37011.9382
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Figure 29.4: Centroiding demo

1160.1834 439.9843 17161.5555

True Centroids (The order may be different)
70.0000 90.0000 12666.9016 14.0000
168.0000 386.0000 14476.4591 16.0000
250.0000 230.0000 19905.1312 22.0000
360.0000 1240.2000 37079.0291 41.0000
384.0000 322.0000 19905.1310 22.0000
530.0000 882.0000 29857.6965 33.0000
880.0000 1042.0000 37095.9263 41.0000

1160.2000 440.0000 17190.7948 19.0000

29.5 Star Identification

The Spacecraft Control Toolbox employs the Pyramid algorithm for star identification. The star ID algorithm begins
with proper processing of the star catalog. We have implemented the k-vector search less technique for looking up star
pairs based on measured angles. This is combined with a pyramid star algorithm that find star triads and then matches
them with an additional fourth star, nearly eliminating incorrect star identification.

The k-vector range search technique allows a range of values from the near matrix to be extracted without searching,
by using indexing. The star angles of the star pairs in the near matrix are sorted in ascending order, producing an array
of star angles s, and an additional integer index value is assigned to each pair. A slope and intercept is calculated for
an equivalent straight line through the data. The indices of s can then be calculated for a given star angle range and all
values within the range easily retrieved. Practically, the index k gives the number of elements in the angle array below
the value dictated by the equivalent line.
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Figure 29.5: StarCentroidCOM demo

The script CreateKVector produces a demo in MATLAB with the plots in Figure 29.6. This is for a simple set of
random numbers on the interval (0,1). The plot on the left shows the steps in k, in a stair plot, as compared against
a linear progression. For example, at index 4, k jumps from 2 to 4, indicating that there are 4 data points with values
below the line value at that index. On the right, the data is printed against the straight line fit to the endpoints, with a
range calculated of 0.5 to 0.75. The range is marked with the magenta solid lines. The data points that are circled are
the values returned as in the desired range. We can see in this particular example that one data point below 0.5 was
returned, because it is also above the value of the closest line point, 0.4642. The line points bracketing the range are
indicated by the black dashed lines.

Figure 29.6: K-Vector Example in MATLAB
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When using k-vector with measured star pairs, the angle range will be the measured angle θ plus and minus some
δ. This should be a high confidence interval such as 4σ. This could be a constant value for the entire pixel array or
calculated based on the star locations or angle as is explained in the next section.
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The pyramid algorithm1 begins with star triads but adds a fourth star to the pattern for more precise identification. It
has been tested on orbit on the HETE spacecraft.

The demo StarIDPyramidDemo.

%% Parameters
% Constant
degToRad = pi/180;

% Camera parameters
fOV = 30*degToRad;
fScale = 1;
nPixels = 1024;

qBToS = [1;0;0;0];
uS = [0 0 1]’;

%% Create a random star catalog
nStars = 1000;
angRes = 5*fOV/nPixels;
[˜,starCatalog] = RandSC(nStars);
d = StarDataGeneration( starCatalog, fOV*sqrt(2), angRes );

%% Identify stars form random initial conditions
disp(’Demo of StarIDPyramid --’)
options = StarIDPyramid;
options.pixelMapScale = fScale;
for k = 1:100

q = QRand;
s = StarSensor( q, qBToS, uS, d.starMatrix, fOV, fScale )

;
starMeas.pixelIntensity = s(1,:);
starMeas.pixelLocation = s(2:3,:);
starID = StarIDPyramid( starMeas, d, options );
fprintf(’Quaternion: [%f %f %f %f]\n’,q)
fprintf(’Star IDs: %s\n’,num2str(starID));

end

shows how to use the pyramid algorithm. Only the first few quaternions are shown below.

>> StarIDPyramidDemo

StarDataGeneration: Eliminating stars that cannot be separated based on the input
angular resolution.

StarDataGeneration: 2 stars will be eliminated that are too close to other
stars.

998 stars will be in the reduced catalog.
Demo of StarIDPyramid --
Quaternion: [0.578263 -0.410593 0.341393 -0.616828]
Star IDs: 36 156 208 249 256 322 350 363 368 389 397 482
Quaternion: [0.708439 0.147505 -0.272617 -0.634064]
Star IDs: 9 22 176 210 238 353 391 413 427 432 465 518
Quaternion: [0.549248 -0.491669 -0.015056 -0.675545]
Star IDs: 4 25 29 93 146 162 165 193 237 271 340 343

The pre-processing of the catalog removes closely spaced stars.

1Mortari, Samaan, Bruccoleri, and Junkins. The Pyramid Star Identification Technique, Navigation, Vol. 51, No. 3, Sept. 2004
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29.6 Kalman Filtering

The final step is to integrate these functions with filtering. Both gyro based and gyro-less algorithms are available.
You can use the Extended Kalman Filter, Least Squares or the Unscented Kalman Filter. UKF is useful with nonlinear
sensor models. AttDetEKFSim is a simulation using gyros and the EKF. StellarAttDetEKF implements stellar
attitude determination with the EKF. Figure 29.7 shows the convergence of the attitude errors.

Figure 29.7: Use of the EKF for stellar attitude determination.
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UNSCENTED KALMAN FILTER

30.1 Introduction

The unscented Kalman Filter is an alternate approach to estimating states and parameters in a nonlinear system. In
fact, it is not necessary to distinguish between states and parameters at all. A major advantage, albeit at the cost of
additional computation, is that it can employ any nonlinear measurement model or plant model.

This chapter gives an example of an unscented Kalman Filter.

30.2 Pressure Kalman Filter

This demonstration in PressureKF for a fuel mass Kalman filter for a blowdown system. In a blowdown system,
the fuel is pressurized by a gas, such as helium. As fuel is consumed the gas expands into the empty volume and the
pressure decreases. The estimator uses a pulsewidth model and a pressure measurement. The pressure measurements
on a spacecraft are generally low resolution, typically 8 bits over the entire pressure range (of 350 psi to 100 psi.)
Every time a thruster fires, the model computes the fuel used based on a model of fuel consumption versus pulsewidth.
This is the dynamical model. The measurement of pressure is then incorporated into the estimate using an Unscented
Kalman Filter (UKF) implemented in UKF. The UKF can use a nonlinear measurement and plant (dynamics) model
directly without any linearization.

The script computes a random pulsewidth from 0 to 8 seconds in length when a second random number between 0 and
1, is greater than 0.95. The pressure measurement has 12 bits resolution and random noise.

The script is fairly short so we show it all here. A problem that may occur is if you have defined d prior to running
this script. You may get an error

>> PressureKF
Unable to perform assignment because dot indexing is not supported for variables

of this type.
Error in PressureKF (line 56)
d.x = 0.9997*mFuel;

Just clear all.

Listing 30.1: Fuel mass Kalman filter example PressureKF.m

1 %% Demonstrate a fuel mass Kalman filter for a blowdown system.
2 % In a blowdown system, the fuel is pressurized by a gas, such as
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3 % helium. As fuel is consumed the gas expands into the empty volume
4 % and the pressure decreases. The estimator
5 % uses a pulsewidth model and a pressure measurement. The pressure
6 % measurements on a spacecraft are generally low resolution, typically
7 % 8 bits over the entire pressure range (of 350 psi to 100 psi.)
8 % Every time a thruster fires, the model computes the fuel used
9 % based on a model of fuel consumption versus pulsewidth. This is

10 % the dynamical model. The measurement of pressure is then
11 % incorporated into the estimate using an Unscented Kalman Filter
12 % (UKF). The UKF can use a nonlinear measurement and plant (dynamics)
13 % model directly without any linearization.
14 %
15 % The script computes a random pulsewidth from 0 to 8 seconds in
16 % length when a second random number between 0 and 1, is greater than
17 % 0.95.
18 %
19 % The pressure measurement has 12 bits resolution and random noise.
20 %
21 % The script plots true pressure, fuel mass estimated errors, pulsewidth
22 % and the pressure measurement.
23 %
24 % ------------------------------------------------------------------------
25 % See also NQuant, Plot2D, UKF, BloDownMass, UE, BloDown, MolWt2R
26 % ------------------------------------------------------------------------
27 %%
28 %--------------------------------------------------------------------------
29 % Copyright (c) 2006 Princeton Satellite Systems, Inc.
30 % All rights reserved.
31 %--------------------------------------------------------------------------
32

33 uE = 200*9.806;
34 thrust = 1;
35 dT = 8;
36 mDot = thrust/uE;
37

38 T = 300;
39 vTank = 0.5;
40 rhoFuel = 1000;
41 mPress = 0.5;
42 rPress = MolWt2R( 0.004 ); % He
43

44 nSim = 1000;
45

46 p = 350*6895;
47 mFuel = BloDownMass( mPress, rhoFuel, vTank, rPress, T, p );
48 xPlot = zeros(6,nSim);
49 lSB = p/2ˆ12;
50 sigQ = sqrt(NQuant( lSB, ’truncate’ ));
51 sigN = lSB/2;
52

53 %% Estimation parameters
54 %----------------------
55 d.x = 0.9997*mFuel;
56 d.rHSFun = ’RHSPressure’;
57 d.measFun = ’GPressure’;
58 d.measFunData = struct(’vTank’,vTank,’rhoFuel’,rhoFuel,’mPress’,mPress,’rPress’,rPress,’T’,T)

;
59 d.alpha = 0.5;
60 d.kappa = 0;
61 d.beta = 2;
62 d.dY = 1;
63 d.dT = dT;
64 d.rM = sigQˆ2 + sigNˆ2;
65 d.rP = 0.00001;
66 d.p = 40*d.rP;
67 d = UKF(’initialize’, d );
68

69 for k = 1:nSim
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70 if( rand > 0.95 )
71 pw = rand*8;
72 else
73 pw = 0;
74 end
75 p = BloDown( mPress, rhoFuel, vTank, rPress, T, mFuel );
76 pMeas = lSB*floor(p/lSB) + sigN*randn;
77 xPlot(:,k) = [p;mFuel;pw;pMeas;d.x;d.p];
78 mFuel = mFuel - mDot*pw;
79 d.t = 0;
80 d.rHSFunData = struct(’mDot’,mDot,’pw’,pw,’dT’,dT);
81 d = UKF( ’update’, d, pMeas );
82 end
83

84 yL = {’Pressure (N/mˆ2)’ ’Fuel Error (kg)’ ’Pulsewidth (sec)’ ’Meas (N/mˆ2)’ , ’P’};
85 Plot2D( (0:(nSim-1))*dT,[xPlot(1,:);xPlot(2,:) - xPlot(5,:);xPlot([3 4 6],:)] , ’Time (sec)’,

yL, ’Pressure KF’)

PressureKF.m

Figure 30.1: Pressure Kalman Filter
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The top plot in Figure 30.1 shows the pressure. The second shows the fuel mass estimation error. The next plot shows
the pulsewidth of thruster firings which are consuming the fuel. The noisy pressure estimate is shown below that. The
covariance, shown in the last plot, decreases rapidly and then is constant. This is confirmed by the mass error which
reaches steady state quickly.
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APPENDIX A

GOES INTERFACE

This chapter presents the GOES interface functions.

A.1 Introduction

The GOES functions provides a convenient and easy-to-use interface to the GOES CD-ROM. The Toolbox can read
GOES binary files and either display the information in plots, or load it into matrices for further manipulation. The
Toolbox formats the data and removes telemetry glitches automatically. The CD-ROM includes data from GOES-2
through GOES-7 starting in January 1986. The data is available as one and five minute averages. The five minute
averages take up between 288K and 320K while the one minute averages range from 1,440K to 1,600K. Manipulating
the five minute averages requires about 12,000K allocated to MATLAB and manipulating the one minute averages
requires in excess of 20,000K.

A.2 Loading GOES Data

To load GOES data type the command

>> LoadGOES

You will then see a dialog box resembling that shown in Figure A-1 on page 237.

All files with the .bin suffix will be displayed and/or highlighted. Double click on the only file name that appears.
The file names have the format DSSRYYMM.BIN;1 where

Table A-1: GOES data definition
Digits Description
D Data Version:

G, X-ray, Magnetic Field, Electrons & Uncorrected Proton Channels
Z, X-ray, Magnetic Field, Electrons & Corrected Proton Channels
I, X-ray, Magnetic Field, Electrons & Corrected Integral Proton Channels
H, X-ray, Magnetic Field, Electrons & HEPAD
A, X-ray, Magnetic Field, Electrons & Uncorrected Alpha particles

SS Satellite ID (02 through 07)
R Time Resolution (5 = 5-minute averages, 1 = 1-minute averages
YY Year
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MM Month

Double click on the filename in the window or hit the OPEN button. All of the GOES data will be displayed in a series
of three plots. The first shows magnetometer data, the second X-ray and electron data and the third will show proton
and alpha particle data.

A.3 Getting GOES Longitude

Type the command

>> LoadSatP

A dialog box will appear listing all files with the suffix .TXT. A plot of the longitude for all GOES satellites from
1986 through the present will be displayed.

A.4 GOES functions

A.4.1 LoadMag

These examples require the GOES CD. LoadMag loads multiple magnetic field files into one array. For example put
the GOES CD in your CD drive and type:

b = LoadMag(7,’GOES_94’,11,88,5,89);
Plot2D([],b,’Sample’,’Magnetic Field’)

You will get the plot in Figure A-2 on the next page.

A.4.2 LoadSers

LoadSers loads GOES data. For example, with the CD in the drive, type

[b,e,x,p,file] = LoadSers(7,’A’,’GOES_94’,11,88,11,88);
Plot2D([],e, S a m p l e , Electrons )

Figure A-3 on page 238 shows the resulting plot.

A.4.3 Weather

Weather gives a summary plot of all GOES data. For example, type

>> Weather

and select the file in the GOESData folder. You will then see the plot in Figure A-4 on page 238.

A.5 For More Information

The GOES CD-ROM is a product of the National Oceanic and Atmospheric Administration National Geophysical
Data Center Solar-Terrestrial Physics Division. The CD-ROM includes data from January 1986-present for all of the
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Figure A-1: Loading GOES data

Figure A-2: GOES Magnetic Field Data
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Figure A-3: GOES Electrons

Electrons

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

200

400

600

800

1000

1200

1400

1600

1800

E
le

ct
ro

n
s

Sample

Figure A-4: GOES Weather
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GOES satellites. The CD-ROM disk is updated periodically. The most up-to-date information is also available on 3.5”
floppy disks.

A.6 References

• Wilkinson, D. and G. Ushomirskiy. (1994).

• GOES Space Environment Monitor CD-ROM 1-Minute and 5- Minute Averages January 1986-April 1994

• User Documention. National Oceanic and Atmospheric Administration National Geophysical Data Center
Solar-Terrestrial Physics Division, July 18, 1994.
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APPENDIX B

USING DATABASES

This chapter shows you how to use the database and constant functions in the toolboxes. These functions allow you
to manage the various constants and parameters used in your projects and ensure that all of your engineers are using
consistent numbers in their analyses.

B.1 The Constant Database

The constant database gives a substantial selection of useful constants. If you type

Constant

you will get the GUI in Figure B-1.

Figure B-1: Constant database

The list on the left is a list of all of the constants in the database. You can enter a search string and look for matches
by hitting Find. If you then click one of the selections the GUI looks like it does in the following figure. This function
always loads its constants from the .mat file SCTConstants.mat

The string field shows the parameter name. Directly below it is the value for the parameter. The value may be any
MATLAB construct. Directly below that is a field for units, then a field for reference information and finally a field
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Figure B-2: Searching for ’mass’

that gives a template for the function. You can cut and paste this into any function or script. Searches are case and
whitespace insensitive. To add a new constant, type a constant name in the String field, a value in the value field and
optionally, units and reference information. Hit Add. You will get a warning if you try to replace an existing constant.
To modify the value of an existing constant, select the constant you wish to modify. Edit the value and hit the Add
button. You can delete a constant by hitting the Delete button. You can access the database through the command line
by passing the name of the desired constant to the function. For example:

1 Constant(’mass sun/mass jupiter’)
2 ans =
3 1.0474e+03

The database loads its constants from a database the first time it is launched. Once it is launched, it will not load a
new database. However there is a fair amount of overhead involved in searching for a constant so we recommend that
whenever possible you get the constant once from the database and store it in a local variable.

B.2 Merging Constant Databases

Periodically, PSS will release new constant databases. If you have customized your own database you can merge it
with the PSS database using the MergeConstantDB function. Just type

MergeConstantDB( ’initialize’, a, b )

where a and b are the .mat files to be merged. The standard PSS database is called SCTConstants.mat. In this
example we have modified the value of ‘accel grav mks’ to be 9.8068. We type

MergeConstantDB(’initialize’,’SCTConstants.mat’,’SCTConstantsOld.mat’)

You will see the display in Figure B-3 on the next page. Just click the button for the column you wish to include in
SCTConstants.mat.
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Figure B-3: MergeConstantDB function
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APPENDIX C

GUI PLUG INS

This section shows you how to use GUI plug-ins. Such plug-ins are used in a number of displays created by Princeton
Satellite Systems and you can use them to build your own custom displays for performing simulations and analy-
sis. These functions date from MATAB version 5.2 but are still supported in version 7. See Common/Plugins and
SC/GUIPlugIn for available plug-ins.

C.1 GUI PlugIn Demo

PlugInDemo is a m-file function that implements an orbit simulation using several GUI PlugIn elements. This can
be used as a template for your simulations.

Figure C-1: PlugInDemo on starting

The GUI PlugIns shown are from top to bottom starting on the left:

• OrbitDisplayPlugin
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• PlotPlugIn

• TimePlugIn

• ElementsPlugin

• DrawSCPlugin

The Run, QUIT and HELP buttons are part of the PlugInDemo function.

You can change any of the displayed properties in the three frames on the right. Whenever you change the properties,
the changes are passed to the rest of the GUI. For example, if you select the earth as the camera center and zoom out
you get the display in Figure C-2.

Figure C-2: PlugInDemo with the earth as center

You can change planets as shown in Figure C-3 on the next page.

If you hit Run, the simulation will run. The results at the end are shown in Figure C-4 on the facing page.

The 3D window (which is animated) looks like Figure C-5 on page 248.

C.2 Writing Your Own GUI Function

PlugInDemo is implemented as shown below.

Listing C.1: PlugInDemo top-level switch statement PlugInDemo.m

1 function PlugInDemo( action )
2 % Process the input arguments
3 %----------------------------
4 if( nargin < 1 )
5 action = ’create gui’;
6 end
7 % Perform actions
8 %----------------
9 switch action
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Figure C-3: Selecting planets in the elements plugin

Figure C-4: PlugInDemo at the end of the simulation
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Figure C-5: PlugInDemo 3D Spacecraft Display

10 case ’help’
11 HelpSystem( ’initialize’, ’SCHelp’ );
12 case ’create gui’
13 h = GetH;
14 if( isempty(h) )
15 CreateGUI;
16 else
17 figure( h.fig );
18 end
19 case ’run’
20 Run;
21 case ’changed’
22 Update;
23 case ’quit’
24 h = GetH;
25 CloseFigure( h.fig );
26 end

PlugInDemo.m

This first part uses a switch statement to get the right action when PlugInDemo is called. All of the actions come
about when you click buttons on the window. You run PlugInDemo by typing

PlugInDemo

If a PlugInDemo window already exists it will bring it to the front.

The CreateGUI subfunction draws the window and initializes all the plugins.

Listing C.2: CreateGUI PlugInDemo.m

1 function CreateGUI
2

3 % The figure window
4 %------------------
5 p = [5 5 760 480];
6 h.fig = figure( ’name’,’GUIPlugInDemo’,’Units’,’pixels’, ’Position’,[40 p(4) - 600
7 p(3:4)],’resize’,’off’, ’NumberTitle’, ’off’,’tag’, ’GUI PlugIn Demo’,
8 ’CloseRequestFcn’, CreateCallback( ’quit’ ) );
9
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10 % Buttons
11 %--------
12 v = {’parent’, h.fig, ’units’, ’pixels’, ’fontunits’, ’pixels’};
13 r = p(1) + p(3);
14 h.run = uicontrol( v{:}, ’Position’, [r-205 10 60 20], ’callback’,
15 CreateCallback( ’run’ ), ’string’,’Run’ );
16 h.quit = uicontrol( v{:}, ’Position’, [r-140 10 60 20], ’callback’,
17 CreateCallback( ’quit’ ), ’string’,’QUIT’);
18 h.help = uicontrol( v{:}, ’Position’, [r- 75 10 60 20], ’callback’,
19 CreateCallback( ’help’ ), ’string’,’HELP’);
20

21 % Initialize the plugins
22 %-----------------------
23 cB = ’PlugInDemo( ’’changed’’ )’;
24 h.orbitDisplayTag = OrbitDisplayPlugIn( ’initialize’, [], h.fig, [ 5 250 290
25 185], [] );
26 h.plotPlugInTag = PlotPlugIn( ’initialize’, [], h.fig, [ 5 10 290 235] );
27 h.timePlugInTag = TimePlugIn( ’initialize’, [], h.fig, [300 420 450 50], cB );
28 h.elementsPlugInTag = ElementsPlugIn( ’initialize’, [], h.fig, [300 320 450 90],
29 cB );
30

31 % Initialize the 3D window
32 %-------------------------
33 sim = GetSimData( h );
34 h.g = load(’TechSat-21’);
35 if( isfield( sim.orbit, ’r’ ) & isfield( sim.orbit, ’v’ ) )
36 h.g.body(1).bHinge.q = QLVLH(sim.orbit.r, sim.orbit.v );
37 else
38 h.g.body(1).bHinge.q = [1;0;0;0];
39 end
40

41 h.g.name = ’TechSat-21’;
42 if( isfield( sim.orbit, ’r’ ) )
43 h.g.rECI = sim.orbit.r;
44 else
45 h.g.rECI = [sim.orbit.el(1);0;0];
46 end
47 h.g.qLVLH = h.g.body(1).bHinge.q;
48 h.scWindowTag = DrawSCPlugIn( ’initialize’, h.g, h.fig, [400 40 350 270], ’earth’,
49 sim.time.jDEpoch );
50

51 PutH( h );

PlugInDemo.m

figure and uicontrol are MATLAB functions. figure creates a new figure window and uicontrol creates a
new user interface control. In this case the uicontrols are the Run, HELP and QUIT buttons. Arguments are passed to
figure and uicontrol in pairs. The first argument of each pair describes the next argument. For example,

’position’

tells MATLAB that

[r-205 10 60 20]

is

[left bottom width height]

in MATLAB screen coordinates. You can store parameter pairs in a cell array

v = ’parent’, h.fig, ’units’, ’pixels’, ’fontunits’, ’pixels’

and pass them to a uicontrol as
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uicontrol( v{:}, ...

the {:} expands the values in the cell array so that this is the equivalent of

uicontrol(’parent’, h.fig, ’units’, ’pixels’, ’fontunits’, ’pixels’,...

The rest of the code initializes the plug-ins. They all have the same format. The spacecraft model is also read-in from
a .mat file and used to initialize the DrawSCPlugin.

The following code is the orbit simulation. It gets the data from the plug-ins and updates the 3D display.

Listing C.3: Initializing the simulation PlugInDemo.m

1 function Run
2

3 % Get the simulation data
4 %------------------------
5 h = GetH;
6 sim = GetSimData( h );
7

8 % Duration
9 %---------

10 duration = datenum(sim.time.duration)*86400;
11

12 % Check duration
13 %---------------
14 if( duration == 0 )
15 msgbox(’The duration is zero. Will not run the simulation.’);
16 return
17 end
18

19 % Create the basic state vector from required plug-ins
20 %-----------------------------------------------------
21 x = [sim.orbit.r; sim.orbit.v];
22 jD = sim.time.jDEpoch;
23 nSim = duration/sim.time.dT;
24 y{1} = zeros(6,nSim);
25 t = 0;
26 DrawSCPlugIn( ’bring to front’, h.scWindowTag );

PlugInDemo.m

The simulation is run with the following code. FOrbCart returns the state derivatives for the orbit model.

Listing C.4: The simulation loop PlugInDemo.m

1 for k = 1:nSim
2 % Plotting
3 %---------
4 y{1}(:,k) = x;
5 u(k) = t;
6

7 % Transformation matrices
8 %------------------------
9 qLVLH = QLVLH( x(1:3), x(4:6) );

10 h.g.body(1).bHinge.q = QPose( qLVLH );
11 h.g.rECI = x(1:3);
12 h.g.qLVLH = qLVLH ;
13 DrawSCPlugin( ’update spacecraft’, h.scWindowTag, h.g, jD );
14 % Propagate the orbits
15 %---------------------
16 x = RK4( ’FOrbCart’, x, sim.time.dT, t, sim.orbit.mu );
17 % Update the time
18 %----------------
19 t = t + sim.time.dT;
20 jD = jD + sim.time.dT/86400;
21 end
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PlugInDemo.m

The plots are created with the following code.

Listing C.5: Plotting PlugInDemo.m

1 % Plotting
2 %---------
3 if( ˜isempty( y ) )
4 PlotPlugIn( ’clear plots’, h.plotPlugInTag, k );
5 p.xLabel = {’Time (sec)’};
6 p.yLabel = {’xECI’ ’yECI’ ’zECI’ ’vXECI’ ’vYECI’ ’vZECI’};
7 p.title = p.yLabel;
8 PlotPlugIn( ’update labels’, h.plotPlugInTag, p );
9 PlotPlugIn( ’add points’, h.plotPlugInTag, struct(’x’, u, ’y’, y ) );

10 PlotPlugIn( ’plot’, h.plotPlugInTag );
11 end
12

13 jD = sim.time.jDEpoch + (0:(nSim-1))*sim.time.dT/86400;
14 OrbitDisplayPlugIn( ’draw’, h.orbitDisplayTag, {y{1}(1:3,:)}, jD,
15 sim.orbit.planet );
16

17 PutH( h );

PlugInDemo.m

When you change anything in a plugin the following code is executed. Three plugins are called as part of this code.
DrawSCPlugin is called twice, once to update the spacecraft and the second time to update the planet.

Listing C.6: Update PlugInDemo PlugInDemo.m

1 function Update
2 % Get the simulation data
3 %------------------------
4 h = GetH;
5 sim = GetSimData( h );
6

7 % Update the spacecraft state
8 %----------------------------
9 if( isfield( sim.orbit, ’r’ ) & isfield( sim.orbit, ’v’ ) )

10 qLVLH = QLVLH(sim.orbit.r, sim.orbit.v );
11 else
12 qLVLH = [1;0;0;0];
13 end
14

15 h.g.body(1).bHinge.q = QPose( qLVLH );
16 if( isfield( sim.orbit, ’r’ ) )
17 h.g.rECI = sim.orbit.r;
18 else
19 h.g.rECI = [sim.orbit.el(1);0;0];
20 end
21 h.g.qLVLH = qLVLH ;
22 DrawSCPlugin( ’update spacecraft’, h.scWindowTag, h.g, sim.time.jDEpoch
23 );
24 OrbitDisplayPlugIn( ’clear plot’, h.orbitDisplayTag, sim.orbit.planet );
25 DrawSCPlugin( ’update planet’, h.scWindowTag, sim.orbit.planet );
26 PutH( h );

PlugInDemo.m

The function GetSimData gets the data from the elements and time plug-ins. The first argument to each plugin is
an action and the second is the tag for the plugin. The tag tells MATLAB which copy of the plugin to call.

Listing: Get data from the plug-ins
1 function sim = GetSimData( h )
2

3 % Get the data from the plug ins
4 %-------------------------------
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5 sim.orbit = ElementsPlugIn( ’get’, h.elementsPlugInTag );
6 sim.time = TimePlugIn ( ’get’, h.timePlugInTag );

The following are utility functions for getting data from the figure handle, putting data into the figure handle and
creating uicontrol callback strings.

Listing C.7: Utilities PlugInDemo.m

1 %------------------------------------------------------------------------
2 % Put the data into the figure handle
3 %------------------------------------------------------------------------
4 function PutH( h )
5

6 set( h.fig, ’UserData’, h );
7

8 %------------------------------------------------------------------------
9 % Get the data from the figure handle

10 %------------------------------------------------------------------------
11 function h = GetH
12

13 hFig = findobj( allchild(0), ’flat’, ’Tag’, ’GUI PlugIn Demo’ );
14 h = get( hFig, ’userdata’ );
15

16 %------------------------------------------------------------------------
17 % Create a callback string
18 %------------------------------------------------------------------------
19 function c = CreateCallback( action )
20

21 c = [’PlugInDemo( ’’’ action ’’’ )’];

PlugInDemo.m
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