
Wind Turbine Control Toolbox v2.0

This software described in this document is furnished under a license agreement. The software may be used, copied or translated
into other languages only under the terms of the license agreement.

Wind Turbine Control Toolbox

Copyright c� 2009-2010 by Princeton Satellite Systems, Inc. All rights reserved.

MATLAB is a trademark of the MathWorks.

All other brand or product names are trademarks or registered trademarks of their respective companies or organizations.

Printing History:

January 28, 2009 First Printing v1.0

Princeton Satellite Systems, Inc.
33 Witherspoon Street
Princeton, New Jersey 08542

Technical Support/Sales/Info: http://www.psatellite.com

ii

CONTENTS

Contents iii

1 Introduction 1

1.1 Organization . 1

1.2 Requirements . 2

1.3 Installation . 2

1.4 Getting Started . 2

2 Getting Help 5

2.1 MATLAB Help . 5

2.2 FileHelp . 6

2.2.1 Introduction . 6

2.2.2 The List Pane . 7

2.2.3 Edit Button . 7

2.2.4 The Example Pane . 7

2.2.5 Run Example Button . 7

2.2.6 Save Example Button . 7

2.2.7 Help Button . 7

2.2.8 Quit . 7

2.3 Searching in File Help . 7

2.3.1 Search File Names Button . 8

2.3.2 Find All Button . 8

2.3.3 Search Headers Button . 8

2.3.4 Search String Edit Box . 8

iii

CONTENTS CONTENTS

2.4 Technical Support . 8

3 Fundamentals 9

3.1 Classes . 9

3.2 Code Conventions . 11

4 Simulation 13

4.1 Introduction to WTSim . 13

4.2 Getting Started . 14

4.2.1 Examine a Block . 14

4.2.2 View / Change the Values of States and Parameters . 15

4.2.3 Load / Save a Setup File . 15

4.2.4 Run a Simulation . 16

4.2.5 Analyze the Results . 16

4.3 Model Functions . 17

4.3.1 Usage Formats . 17

4.3.2 Defining the Model I/O . 17

4.3.3 Model Initialization . 19

4.3.4 Model Update . 20

5 Airfoil Models 23

5.1 Airfoil Functions . 23

5.1.1 Introduction . 23

5.1.2 Loading Data . 23

5.1.3 Using the Data . 24

5.2 An Example . 24

5.3 Coefficients from Shapes . 26

6 Blade Models 27

6.1 Introduction . 27

6.2 Vertical Axis Wind Turbine Blade Models . 27

6.2.1 Torque Model . 27

iv

CONTENTS CONTENTS

6.3 Horizontal Axis Wind Turbine Blade Models . 27

6.3.1 Torque Model . 27

6.4 Double Streamtube Models . 28

7 Control Design 33

7.1 Introduction . 33

7.2 Maximum Power Tracking . 33

7.3 Generator Control . 36

7.4 Control Design Functions . 36

7.5 HAWT Demo . 37

7.6 DFIG Control . 37

7.7 VAWT Demo . 40

7.7.1 Pitch Control Algorithms . 42

8 Estimation 43

8.1 Overview . 43

8.2 Fixed Gain Estimators . 44

8.3 Variable Gain Estimators . 44

8.4 Extended Kalman Filter . 45

8.5 Continuous Discrete Extended Kalman Filter . 45

8.5.1 Introduction . 45

8.6 Unscented Kalman Filter . 46

9 Electrical Models 47

9.1 Introduction . 47

9.2 Circuit Element Models . 47

9.2.1 Introduction . 47

9.2.2 Diode . 47

9.2.3 Bridge Rectifier . 48

9.2.4 Capacitor . 48

9.2.5 Inductor . 48

v

CONTENTS CONTENTS

9.2.6 Grid Model . 48

9.2.7 Transformer . 49

9.2.8 Matrix Converter . 49

9.2.9 Three Phase Rectifier . 50

9.3 Utility . 50

9.3.1 Phases . 50

10 Generator Models 51

10.1 Introduction . 51

10.2 Electrical and Mechanical Degrees . 51

10.3 Direct Quadrature Model . 52

10.4 Per Unit Normalization . 52

10.5 Permanent Magnet Generator Model . 53

10.6 Doubly Fed Induction Generator . 55

11 Mechanical 57

11.1 Overview . 57

11.2 Mechanism Models . 57

11.2.1 Introduction . 57

11.2.2 Bearing . 57

11.2.3 Coupling . 58

11.2.4 Rectangular Beam . 58

11.2.5 Gear Box . 58

11.2.6 Gears . 58

11.3 Joint Calculators . 58

11.3.1 Introduction . 58

11.3.2 Welds . 58

11.3.3 Interference Fits . 59

11.4 Blade Static Approximations . 59

11.4.1 Introduction . 59

11.4.2 Drag Force . 60

vi

CONTENTS CONTENTS

11.4.3 Hinge Moment . 60

11.4.4 Moment of Inertia . 60

11.4.5 Bending Stress . 60

11.4.6 Bearing Distances . 60

12 Multibody Models 61

12.1 Introduction . 61

12.2 Background . 61

12.2.1 Tree . 61

12.2.2 Hinges . 61

12.2.3 Computations . 61

12.3 Example . 62

13 Utilities 65

13.1 Introduction . 65

13.2 Reynold’s Number . 65

13.3 DrawHAWT . 66

13.4 DrawVAWT . 66

13.5 LiftAndDragCoeff . 67

13.6 PowerFromActuatorDisk . 67

14 WindData 69

14.1 Introduction . 69

14.2 Wind Data . 69

15 Wind Models 73

15.1 Introduction . 73

15.2 Dynamical Models . 73

15.2.1 WindspeedHours . 73

15.2.2 WindDeterministic . 74

15.2.3 WindStochastic . 74

15.2.4 WindAdmittance . 74

vii

CONTENTS CONTENTS

15.2.5 Wind . 76

Bibliography 77

viii

CHAPTER 1

INTRODUCTION

This chapter shows you how to install the Wind Turbine Control Toolbox (WCT) and how it is organized.

1.1 Organization

The Wind Turbine Control Toolbox (WCT) provides a suite of MATLAB functions designed to assist engineers with
the design, simulation and performance analysis of wind turbines.

The toolbox code is organized into several different folders, described in the following table.

Table 1-1. Wind Turbine Control Toolbox

Folder Functionality
AirfoilData Data for airfoils and functions to read in airfoil data
Blade Functions to model individual blade aerodynamics.
Common Engineering constants database, control design and analysis tools, general coordinate trans-

formation routines, graphics and plot utilities, vector math operations, trigonometric oper-
ations, Newton-Raphson method, Runge-Kutta integration, Simplex, and probability anal-
ysis tools.

ControlDesign Example scripts that illustrate some specific control design techniques.
Demos Demonstration scripts.
DeviceDesign Functions for designing hardware.
DynamicModels Models of dynamical components.
Electrical Models of circuit components and electrical devices.
Estimation Estimator functions.
Generator Models of generators.
Mechanical Mechanical design functions.
Multibody A topological tree multi-rigid-body model
Sim The wind turbine simulation. Includes a GUI for setting up and running simulations, and a

directory structure for organizing models.
Utility Miscellaneous functions for general analysis, design and modeling tasks (e.g. torque and

power relationships.
WindData Several different shape files with a function to load and plot the data.
WindModels Includes a deterministic and a stochastic wind model.

The “Common” folder contains a large code base that provides the core functionality for other PSS software products,
including the Aircraft Control Toolbox and the Spacecraft Control Toolbox.

1

1.2. REQUIREMENTS CHAPTER 1. INTRODUCTION

1.2 Requirements

MATLAB 7.0 at a minimum is required to run all of the functions. Your monitor should have a resolution of at least
1024 by 768 pixels to see all of the GUIs.

1.3 Installation

The product can be downloaded in the form of a zip-file archive from the PSS website: http://www.psatellite.com.

It is recommended that you store a copy of the zip-file for future reference.

Installation involves 3 steps:

1. Unzip the archive

2. Copy the “WCT” folder to a location of your choice

3. Add the WCT folders to your MATLAB path.

You can keep the PDF documentation and the software anywhere you wish. There is no “installer” application to do
the copying for you.

Once you have the software copied to your hard drive, the final step is to add the WCT folders to your MATLAB path.
We recommend using the supplied function PSSSetPaths.m instead ofMATLAB’s path utility. From the MATLAB
prompt, cd to your WCT folder and then run PSSSetPaths. For example:

1 >> cd /Users/me/WCT
2 >> PSSSetPaths

This will set all of the paths for the duration of the session, with the option of saving the new path for future sessions.

1.4 Getting Started

The FileHelp function, discussed in more detail in the next chapter, provides a graphical interface to the MATLAB
function headers. You can peruse the functions by folder to get a quick sense of your new product’s capabilities and
search the function names and headers for keywords. FileHelp provides the best way to get an overview of the
Wind Turbine Control Toolbox.

The Finder GUI, shown on the next page, is another handy function for searching for information in the toolbox.
You can search for instances of keywords in the entire body of functions and demos, not just the help comments. You
can use this function with any toolboxes, not just your PSS toolboxes, since this actively searches the files every time
instead of using a parsed version of the headers the way FileHelp does. Consequently, it is a little slower to use,
but you can use it with your own function libraries too.

The Finder function has options for searching the entire path or a selected directory. The subfolders of a higher-level
directory can be included or not. The Pick button brings up a file selection dialog where you can navigate to your
desired directory. The search can be case sensitive and you can select whole word matching. You can search on just
file help comments, or include or exclude them. For example, you can find all functions and demos that actually use
the function PIDMIMO by searching with comments excluded. Once your search results are displayed in the Results
window, you can open any file by clicking the Edit button.

2

CHAPTER 1. INTRODUCTION 1.4. GETTING STARTED

3

1.4. GETTING STARTED CHAPTER 1. INTRODUCTION

4

CHAPTER 2

GETTING HELP

This chapter shows you how to use the help systems built into PSS Toolboxes. There are several sources of help. First,
there is the MATLAB help system which prints help comments for inidividual files and lists the contents of folders.
Then, there are special help utilities built into the PSS toolboxes: one is the file help function, the second is the demo
functions and the third is the graphical user interface help system. Additionally, you can submit technical support
questions directly to our engineers via email.

2.1 MATLAB Help

You can get help for any function by typing

>> help functionName

For example, if you type

>> help C2DZOH

you will see the following displayed in your MATLAB command window:

1 ---
2 Create a discrete time system from a continuous system
3 assuming a zero-order-hold at the input.
4 Given
5 .
6 x = ax + bu
7

8 Find f and g where
9 x(k+1) = fx(k) + gu(k)

10

11 ---
12 Form:
13 [f, g] = C2DZOH(a, b, T)
14 ---
15 ------
16 Inputs
17 ------
18 a Plant matrix
19 b Input matrix
20 T Time step
21 -------
22 Outputs
23 -------

5

2.2. FILEHELP CHAPTER 2. GETTING HELP

24 f Discrete plant matrix
25 g Discrete input matrix
26

27 ---

All PSS functions have the standard header format shown above. Keep in mind that you can find out which folder a
function resides in using the MATLAB command which, i.e.

>> which C2DZOH
/Software/Toolboxes/Aerospace/Common/Control/C2DZOH.m

When you want more information about a folder of interest, remember that you can get a list of the contents in any
directory by using the help command with a folder name. The returned list of files is organized alphabetically. For
example,

>> help GeneratorModels

2.2 FileHelp

2.2.1 Introduction

When you type

FileHelp

the FileHelp GUI appears.

Figure 2-1. The file help GUI

6

CHAPTER 2. GETTING HELP 2.3. SEARCHING IN FILE HELP

There are five main panes in the window. On the left hand side is a display of all functions in the toolbox arranged
in the same hierarchy as the PSSToolboxes folder. Scripts, including most of the demos, are not included. Below
the hierarchical list is a list in alphabetical order by product. On the right-hand-side is the header display pane.
Immediately below the header display is the editable example pane. To its left is a template for the function. You can
cut and paste the template into your own functions.

2.2.2 The List Pane

If you click a file in the alphabetical or hierarchical lists, the header will appear in the header pane. This is the same
header that is in the file. The headers are extracted from a .mat file so changes you make will not be reflected in the
file. In the hierarchical list, any name with a + or - sign is a folder. Click on the folders until you reach the file you
would like. When you click a file, the header and template will appear.

2.2.3 Edit Button

This opens the MATLAB edit window for the function selected in the list.

2.2.4 The Example Pane

This pane gives an example for the function displayed. Not all functions have examples. The edit display has scroll
bars. You can edit the example, create new examples and save them using the buttons below the display. To run an
example, push the Run Example button. You can include comments in the example by using the percent symbol.

2.2.5 Run Example Button

Run the example in the display. Some of the examples are just the name of the function. These are functions with
built-in demos. Results will appear either in separate figure windows or in the Matlab Command Window.

2.2.6 Save Example Button

Save the example in the edit window. Pushing this button only saves it in the temporary memory used by the GUI.
You can save the example permanently when you Quit.

2.2.7 Help Button

Opens the on-line help system.

2.2.8 Quit

Quit the GUI. If you have edited an example, it will ask you whether you want to save the example before you quit.

2.3 Searching in File Help

7

2.4. TECHNICAL SUPPORT CHAPTER 2. GETTING HELP

2.3.1 Search File Names Button

Type in a function name in the edit box and push Search File Names.

2.3.2 Find All Button

Find All returns to the original list of the functions. This is used after one of the search options has been used.

2.3.3 Search Headers Button

Search headers for a string. This function looks for exact, but not case sensitive, matches. The file display displays all
matches. A progress bar gives you an indication of time remaining in the search.

2.3.4 Search String Edit Box

This is the search string. Spaces will be matched so if you type attitude control it will not match attitude control (with
two spaces.)

2.4 Technical Support

Contact wctsupport@psatellite.com for email technical support. You can also call 01-609-279-9606.

8

CHAPTER 3

FUNDAMENTALS

This chapter gives you some basic information about the toolbox, including the classes and code conventions.

3.1 Classes

The Wind Turbine Control Toolbox defines and makes use of the statespace class.

The statespace class defines a linear statespace dynamic system. The system can be either continuous or discrete.
A continuous system is of the form:

ẋ = Ax+Bu (3-1)
y = Cx+Du (3-2)

where x is the state vector, A is the state transition matrix, and B is the control effect matrix. Each system type is
denoted with a unique string identifier. Continuous systems are denoted with “s”.

For a discrete system, there are two different ways to write the state evolution. The first method is shown below, which
we call the “z” method:

xk+1 = Axk +Buk (3-3)
yk = Cxk +Duk (3-4)

The other discrete method uses the delta operator. This is termed the “delta” method:

xk+1 = xk +Axk +Buk (3-5)
yk = Cxk +Duk (3-6)

A continuous statespace system can be converted to discrete-time by using the C2DZOH or C2DelZOH methods,
which use a zero-order-hold on the input over a specified sampling time. The conversion from continuous to discrete
time changes the A and B matrices only. The same C and D matrices are valid for both continuous and discrete
domains.

To define a statespace class, you must at least specify the A,B,C matrices. If the D matrix is not supplied it is
set to all zeros. In addition, you may also supply a name for the system, individual names for the states, inputs, and
outputs, the system type, and the time step (if the system is discrete). The “help” information on statespace.m explains
how to create an statespace class object.

9

3.1. CLASSES CHAPTER 3. FUNDAMENTALS

1 >> help statespace
2 ---
3 Create a state space object. Everything after c is optional.
4 ---
5 Form:
6 g = statespace(a, b, c, d, name, states, inputs, outputs, sType, dT)
7 ---
8

9 ------
10 Inputs
11 ------
12 a State transition matrix
13 b State input matrix
14 c State output matrix
15 d State feedthrough matrix
16 name (1,:) Name of the system
17 states (:,:) or {:} State names
18 inputs (:,:) or {:} Input names
19 outputs (:,:) or {:} Outputs
20 sType (1,:) ’s’, ’z’, ’delta’
21 dT (1,1) Time step
22

23 -------
24 Outputs
25 -------
26 g (:) Plant
27 g.a State transition matrix
28 g.b State input matrix
29 g.c State output matrix
30 g.d State feedthrough matrix
31 g.n Number of states
32 g.nI Number of inputs
33 g.nO Number of outputs
34 g.states Names of states
35 g.inputs Names of inputs
36 g.outputs Names of outputs
37 g.sType ’s’, ’z’, ’delta’
38 g.dT Time step
39

40 ---

You can view the methods associated with the statespace class by typing:

>> methods statespace

Methods for class statespace:

and connect get getsub mtimes series
statespace

close eig getabcd isempty plus set

Assume you have a statespace class named g. You can extract the A,B,C,D matrices from the class by typing:

>> [a,b,c,d] = getabcd(g);

Similarly, you can extract individual matrices or other information using the get method.

>> b = get(g,’b’);
>> stateNames = get(g,’states’);

10

CHAPTER 3. FUNDAMENTALS 3.2. CODE CONVENTIONS

3.2 Code Conventions

It is important to follow consistent code conventions to make the code easy for other people to understand and use.
The scripts and functions supplied with this toolbox are always supplied with a descriptive header that provides usage
syntax and a list of inputs and outputs. You can type

>> help FUNCTION

for any function to view the header.

When naming variables, we strive to use meaningful names. We also follow the convention:

word1Word2Word3

where the beginning of each word after the first is capitalized. If a word is abbreviated the first letter is not capitalized.
For example:

rPM

is revolutions per minute.

Almost all function names in WCT begin with a capital letter to distinguish them from variables. The only exceptions
are class methods, such as get and plus, for example. These method names overload built-in MATLAB functions
for other class methods, and therefore must be all lower case.

Many functions in the Wind Turbine Control Toolbox can be executed with no inputs, even when inputs are required.
If an input is required but not provided, the function may use its own default value. You can see what the default values
are by opening the function and examining the lines of code that immediately follow the help comments at the top of
the file. For example, consider the WindspeedHours.m function. We see from the help header that it is called as
follows:

% Form:
% [w, v] = WindspeedHours(kRef, hRef, cRef, h, v, dV, u)

This function takes 7 inputs. Examining the file, we see that if no inputs are provided, it uses its own set of default
values:

% Demo
%-----
if(nargin < 1)

disp(’Wind speed hours in Lubbock, TX, USA’);
kRef = 2.01;
cRef = 12.48; % 5.5791
hRef = 30;
WindspeedHours(kRef, hRef, cRef, 60, linspace(4,36), 0.5, ’mph’);
clear w;
return

end

11

3.2. CODE CONVENTIONS CHAPTER 3. FUNDAMENTALS

12

CHAPTER 4

SIMULATION

This chapter describes how to use the WTSim GUI to build and run your own wind turbine simulations.

4.1 Introduction to WTSim

Wind turbine simulations can be performed using the WTSim GUI. A screenshot is shown in Figure 4-1 on the fol-
lowing page. The purpose of this GUI is to provide a general, yet structured framework for conducting simulation and
analysis of various wind turbine configurations.

The GUI is divided into 5 main panels:

• Block Diagram

• Block Info

• Setup File

• Simulation

• Plot Time History

The Block Diagram panel shows a fixed set of blocks that illustrates the general data flow between common wind
turbine components and models. Clicking on a block will select it. Information about the selected block is shown in
the Block Info panel.

The Setup File panel allows you to load an existing setup file into the GUI, or save the current settings to a new setup
file. The setup file includes the following data for each block: the name of the model function to be used, the values
of all parameters, and the initial values of all states.

The Simulation panel enables you to select a time duration to simulate, and specify a number of runs. Multiple runs
can be useful for conducting Monte Carlo simulations, where performance may be sensitive to random parameters,
such as stochastic wind profiles. From this panel, you can start and stop the simulation, and view the current run
number and status of each run while the simulation executes. You can also save the resulting data to a file, and load
previously saved data.

The Plot Time History panel enables you to select a model and an output of that model for plotting. In addition, after
a simulation run, all of the time history data is saved to the workspace in the variable name data, so that you can
conduct further analysis.

13

4.2. GETTING STARTED CHAPTER 4. SIMULATION

Figure 4-1. The WTSim GUI

This chapter does not discuss the simulation models. Those are discussed in subsequent chapters.

4.2 Getting Started

This section briefly describes how to use the WTSim GUI and run a simulation. The toolbox is provided with a built-in
simulation for a horizontal axis wind turbine (HAWT). When the GUI is initialized, the setup file WT HAWTSetup.m
is automatically loaded.

Type WTSim in MATLAB to initialize the GUI.

4.2.1 Examine a Block

Click on a block in the Block Diagram panel to select it. This causes the Block Info panel to update, showing the data
associated with that block. An example screenshot of the Block Info panel is shown in Figure 4-2 on the next page,
here shown with the Blades block selected.

14

CHAPTER 4. SIMULATION 4.2. GETTING STARTED

Figure 4-2. Block Info Panel

From within the Block Info panel, you will see that the display for the “Current Block” is updated to reflect the
name of the block you just selected. You can also see which model function is associated with this block. A unique
model function is supplied for each block for the built-in HAWT simulation. These blocks can serve as templates for
generating your own blocks.

For the model function that you have selected, the corresponding names of the model’s inputs, outputs, states and
parameters are displayed. All of these names are obtained automatically by the GUI, by calling the model function
with no inputs.

4.2.2 View / Change the Values of States and Parameters

The values for states and parameters can be adjusted from the GUI. The original values that appear are specified inside
the setup file. The values for the states represent the initial values of those states. The values of the parameters are
assumed to be fixed inside the model for the duration of the simulation.

Every model must be supplied with a parameter named “dT”, to define its timestep. If it is missing, an error message
will be displayed to warn the user.

4.2.3 Load / Save a Setup File

When the GUI is initialized, it executes the default setup file WT HAWTSetup.m. This defines the model function to
be used for each block, and sets the values for all parameters and initial states. You can reload the setup file at any time
by pressing the “Load” button from the Setup File panel, and selecting WT HAWTSetup.m. This will cause some
output to print to the screen, displaying the dynamic properties of the system at the current operating point, and the
eigenvalues of the closed-loop system with generator control.

To see how the initial state values and parameters were computed in the setup file, press the “EDIT” button inside the
Setup File panel. You will notice that several parameters and some initial states are defined to have common values.
This is important to remember when changing values manually from the GUI.

Any changes made to parameters or initial state values can be saved to a mat-file. These mat-files can also be loaded
into the GUI in the future, in the same way that text-based setup files can be loaded.

15

4.2. GETTING STARTED CHAPTER 4. SIMULATION

4.2.4 Run a Simulation

Now find the Simulation Panel in the bottom-left corner of the GUI. You will see the simulation timestep is 0.001
seconds (1 ms). This value is computed automatically as the greatest common divisor of all the individual model
timestep values, with the number of significant digits limited to 4. In other words, the smallest possible timestep is
0.1 ms1.

If you press the start button right away, you will first be prompted to enter a duration. Enter a small duration, on the
order of a few seconds, to run a short simulation. Next press the start button and watch as the status progresses to
100%.

4.2.5 Analyze the Results

The results are displayed in the Plot Time History panel. An example is shown in Figure 4-3 on the following page.
Here we have selected the Generator model and the output, iQ, which is the quadrature current.

Figure 4-3. Time History of the Generator Quadrature Current

The time histories of all outputs are also stored in the workspace under the names, data and data2. This enables
you to conduct further analysis of the data outside of the GUI. The variable data has the following fields:

>> data
data =

blades: [4x2001 double]
windModel: [2x2001 double]

windSensor: [2x2001 double]
structure: [1x2001 double]

controller: [8x2001 double]
estimator: [3x2001 double]

tach: [1x2001 double]
generator: [5x2001 double]

transmission: [2x2001 double]
converter: [1x2001 double]

grid: [2x2001 double]

As you can see, each field represents one of the simulation blocks. The contents of each field is a matrix of size
Nout × Ntime, where Nout is the number of outputs for that block, and Ntime is the number of time points for the
entire simulation.

The variable data2 contains the same simulation output data, but in a different form of data structure.
1If necessary, this can be changed by finding and changing the definition of sim.sigDigits in the WTSim.m file.

16

CHAPTER 4. SIMULATION 4.3. MODEL FUNCTIONS

>> data2
data2 =

Blades: [1x1 struct]
WindModel: [1x1 struct]

WindSensor: [1x1 struct]
Structure: [1x1 struct]

Controller: [1x1 struct]
Estimator: [1x1 struct]

Tach: [1x1 struct]
Generator: [1x1 struct]

Transmission: [1x1 struct]
Converter: [1x1 struct]

Grid: [1x1 struct]
t: [1x2001 double]

Once again, each field contains the output for a specific model. In this case, however, the contents of each field is
another data structure that contains that model’s outputs organized by the output name. Here is an example:

>> data2.Blades
ans =

angle: [1x2001 double]
omega: [1x2001 double]
torque: [1x2001 double]
power: [1x2001 double]

4.3 Model Functions

In WTSim, each block represents a distinct, independent model of some component of the wind turbine. In order to
simulate a block, you must assign a “model function” to it. A “model function” is simply a MATLAB function (m-file)
that models the behavior of that block.

4.3.1 Usage Formats

Each model function follows a prescribed format. View the help header of any model function to see the different
forms of usage. They are:

% Forms:
%
% ioData = WT_Blades; % Obtain i/o data
% output = WT_Blades(input, time); % Update with current sim time
% output = WT_Blades(input, -1); % initialize

When called with no inputs, the function returns a data structure that details all of its expected inputs, and the outputs
that it provides. When called with an input data structure and a non-zero time, the model updates. When a model
updates, it takes in the input data structure, and returns an output data structure. If the model has dynamics, then
an update also means that it integrates over its timestep from its current state to a new state.

4.3.2 Defining the Model I/O

The model I/O (input/output) information is returned whenever the function is called with no inputs. This is accom-
plished by using the MATLAB nargin command. This usage is needed by the GUI in order to properly display the
inputs, outputs, states and parameters of the model. In addition, it can be used at the command line in order to quickly
see the I/O data of any model. Here is an example of how to do this with the blades model:

>> [inputs, outputs, states, params] = ParseIOData(WT_Blades, ’Blades’)
inputs =

17

4.3. MODEL FUNCTIONS CHAPTER 4. SIMULATION

’transmission.torque’
’windModel.velocity’
’structure.sideslip’

outputs =
’angle’
’omega’
’torque’
’power’

states =
’omega’
’angle’

params =
’dT’
’rho’
’inertia’
’radius’

Note that the user is free to specify whatever names she wishes here, independent of what the update portion of the
code may be doing. It is therefore the responsibility of the user to ensure that these input and output names defined
here do in fact match the names that are used in the update portion of the function. The advised coding practice is to

1. Identify the expected inputs and outputs,

2. write this I/O portion of the function accordingly,

3. write the update portion of the function,

4. check for consistency, and return to step 2. if necessary.

An example taken from the WT Blades.m model function is shown below.

Listing 4.1. Example of Defining the Model I/O WT Blades.m

function output = WT_Blades(input, time)

% HELP HEADER, OMITTED HERE

% return input / output structure (use "memory" field for internal states)
if(nargin==0)

in.blades.dT = []; % time step
in.blades.rho = []; % atmospheric density
in.blades.inertia = []; % blade inertia
in.blades.radius = []; % blade radius
in.memory.omega = []; % radial velocity (state)
in.memory.angle = []; % blade angle (state)
in.transmission.torque = []; % back EMF torque
in.windModel.velocity = []; % wind velocity
in.structure.sideslip = []; % sideslip angle (HAWT only)

out.angle = []; % blade reference angle
out.omega = []; % radial velocity output
out.torque = []; % wind torque output
out.power = []; % wind power output
output.in = in;
output.out = out;
return

end

WT Blades.m

The data structure returned in the variable named output. It has two fields: in and out, each of which is another
data structure. The out structure contains all of the names of the outputs that this model will return when updated.
The in structure contains all of the expected inputs.

18

CHAPTER 4. SIMULATION 4.3. MODEL FUNCTIONS

Note that the input names have an additional layer of organization. In this case, we have the inputs dT, rho, inertia,
and radius stored in the blades field. Because this is a model for the Blades block, these are the parameters of the
model.

Similarly, torque is stored in transmission, velocity in windModel, and sideslip in structure.
These fields represent external blocks. Therefore, these are considered actual inputs.

Finally, we have the omega and angle variables stored in the memory field. Anything stored in the memory field
is a state. In order to function properly, all of the states of a model must also be supplied as outputs. This enables the
simulation to supply them back to the model as inputs in the memory field for the next update.

4.3.3 Model Initialization

In order to run a simulation, the first step is to initialize all of the models. In general, initialization may be needed to:

• Compute the outputs necessary for another model to update

• Perform model-specific initialization steps, such as:

– setting random seeds,

– initializing additional state values,

– clearing persistent memory, etc.

Initialization is done by calling the model with an input data structure, and with a negative time value. An example
initialization code fragment from the Blades model is shown below:

Listing 4.2. Example of Model Initialization WT Blades.m

% initialize
if(time<0)

% input.blades supplied
output.angle = input.blades.angle;
output.omega = input.blades.omega;
output.torque = 0;
output.power = 0;
return;

end

WT Blades.m

Here we set values of angle and omega. Recall that these are states for the model. When a model is initialized
inside the GUI, the input data structure provided to it always includes the initial state values and parameter values
defined for that model. Thus, in general, it is always necessary to have the following line(s) in your initialization case,
for every state of the model:

output.STATE = input.BLOCK.STATE;

where STATE is a state of the model, and BLOCK represents which block the model is simulating (e.g. blades,
structure, windModel, windSensor, etc.).

In this case we just return 0 for the torque and power outputs. For the HAWT simulation, this is okay because the
model update order is such that the blades model will update in the simulation (providing true outputs for torque and
power) before any other blocks need those outputs. It is therefore important to recognize the data dependency of all
models in your simulation, and ensure that the required data is available when each model first updates.

19

4.3. MODEL FUNCTIONS CHAPTER 4. SIMULATION

4.3.4 Model Update

In general, there are 5 basic steps for updating a model:

1. Rename all required inputs to local variable names

2. Perform necessary computations prior to updating the dynamic states

3. Update the dynamic states

4. Perform necessary computations to compute the outputs

5. Return the outputs

If the the model has no dynamic states, then the update sequence is reduced to 3 steps:

1. Rename all required inputs to local variable names

2. Perform necessary computations to compute the outputs

3. Return the outputs

The first step is not required, but due to the length of the original input names, it is recommended for better code
readability. An example of a model update from the Blades model is shown below.

Listing 4.3. Example of Model Update WT Blades.m

% inputs
rho = input.blades.rho; % atmospheric density
inertia = input.blades.inertia; % blade inertia
radius = input.blades.radius; % blade radius
dT = input.blades.dT; % time step
omega = input.memory.omega; % radial velocity
angle = input.memory.angle; % blade angle
emfTorque = input.transmission.torque; % back EMF torque
windVel = input.windModel.velocity; % wind velocity
sideslip = input.structure.sideslip; % sideslip angle (HAWT only)
pitchAngle = input.controller.bladesControl; % pitch angle control input

% wind speed
vWind = Mag(windVel) * cos(sideslip);

% integrate the angular rate with net torque
s.rTurbine = radius;
s.rho = rho;
s.wind = vWind;
s.beta = pitchAngle;
s.startup = .01;

[windTorque, windPower] = TorqueHAWT(omega, s);

d.tW = windTorque;
d.tEM = emfTorque;
d.inr = inertia;
rhsHandle = @(x,d) WT_BladesRHS2(x, d);

% update state
x0 = [angle; omega];
x = RK4TI(rhsHandle, x0, dT, d);

% send output
output.angle = x(1);
output.omega = x(2);

20

CHAPTER 4. SIMULATION 4.3. MODEL FUNCTIONS

output.torque = windTorque;
output.power = windPower;

% RHS FUNCTION
function xDot = WT_BladesRHS2(x, d)
xDot = [x(2); (d.tW-d.tEM)/d.inr];

WT Blades.m

In this case, we embed the RHS function inside the model. This is not necessary. You can use any RHS function to
integrate the dynamics.

21

4.3. MODEL FUNCTIONS CHAPTER 4. SIMULATION

22

CHAPTER 5

AIRFOIL MODELS

5.1 Airfoil Functions

5.1.1 Introduction

The airfoil functions allow you to load in airfoil data and compute lift, drag and moment coefficients.

5.1.2 Loading Data

Data is loaded from a text file of the form
1 CL
2 Reynold’s Numbers
3 alpha1 CL(alpha1,Reynold’s numbers)
4 CD
5 Reynold’s Numbers
6 alpha1 CD(alpha1,Reynold’s numbers)
7 CM
8 Reynold’s Numbers
9 alpha1 CM(alpha1,Reynold’s numbers)

The text “CL” must be in capital letters. There cannot be a line between the CL and the Reynold’s number data. The
Reynold’s numbers are a list of the Reynold’s numbers, one per column of the coefficient. “CM”, “CL” and “CD”
need not have the same number of Reynold’s numbers. Each coefficient row has the corresponding angle of attack
(alpha) which is in degrees.

An example of a file is shown below.
1 CL
2 160000 360000 700000 1000000 2000000 5000000
3 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4

5 1 0.1100 0.1100 0.1100 0.1100 0.1100 0.1100
6 CD
7 160000 360000 700000 1000000 2000000 5000000
8 0 0.0103 0.0079 0.0067 0.0065 0.0064 0.0064
9

10 1 0.0104 0.0080 0.0068 0.0066 0.0064 0.0064
11

12 2 0.0108 0.0084 0.0070 0.0068 0.0066 0.0066
13

14 3 0.0114 0.0089 0.0075 0.0071 0.0069 0.0068
15 CM

23

5.2. AN EXAMPLE CHAPTER 5. AIRFOIL MODELS

16 60000 500000 700000 860000 1360000 1760000
17

18 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

The file should have the name *.af. To load the data do the following:

1 airfoil = LoadAirfoilFile(’MyAirfoil.af’)

The output is a data structure of the form:

1 % airfoil (1,1) Airfoil data structure
2 % .reCL (1,:) Reynold’s number
3 % .alphaCL (1,:) Angle of attack (deg)
4 % .cL (:,:) Lift coefficient
5 % .reCD (1,:) Reynold’s number
6 % .alphaCD (1,:) Angle of attack (deg)
7 % .cD (:,:) Drag coefficient
8 % .reCM (1,:) Reynold’s number
9 % .alphaCM (1,:) Angle of attack (deg)

10 % .cM (:,:) Moment coefficient

5.1.3 Using the Data

You can use the data directly by means of

1 [cL, cD, cM] = ComputeAirfoilCoeff(airfoil, alpha, rE)

The inputs are the airfoil data structure, desired angles of attack and one Reynold’s number. Alternatively you can
compute the linear list curve slope

1 cLAlpha = CLAlpha(airfoil, rE)

which output the slope of the curve before it reaches stall. The lift coefficient is then

1 cL = cLAlpha*alpha;

where the angle of attack is in radians.

5.2 An Example

The toolbox includes four data files, NACA 0012, NACA 0015, NACA 0018 and NACA 0021.

1

2 alpha = LoadAirfoilFile
3

4 ans =
5

6 reCL: [160000 360000 700000 1000000 2000000 5000000]
7 alphaCL: [1x116 double]
8 cL: [116x6 double]
9 reCD: [160000 360000 700000 1000000 2000000 5000000]

10 alphaCD: [1x116 double]
11 cD: [116x6 double]
12 reCM: [60000 500000 700000 860000 1360000 1760000]
13 alphaCM: [1x110 double]
14 cM: [110x6 double]
15

16 ComputeAirfoilCoeff(airfoil,linspace(0,20))

24

CHAPTER 5. AIRFOIL MODELS 5.2. AN EXAMPLE

Figure 5-1. Loaded NACA 0012 airfoil data

NACA0012: CL

0 50 100 150 200 250 300 350 400
−1.5

−1

−0.5

0

0.5

1

1.5
C

L

α (deg)

RE = 160000.0
RE = 360000.0
RE = 700000.0
RE = 1000000.0
RE = 2000000.0
RE = 5000000.0

NACA0012: CD

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

C
D

α (deg)

RE = 160000.0
RE = 360000.0
RE = 700000.0
RE = 1000000.0
RE = 2000000.0
RE = 5000000.0

NACA0012: CM

0 50 100 150 200 250 300 350 400
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

C
M

α (deg)

RE = 60000.0
RE = 500000.0
RE = 700000.0
RE = 860000.0
RE = 1360000.0
RE = 1760000.0

Figure 5-1 on page 25 shows the loaded data.

Figure 5-2 shows the computed coefficients for the range from 0 to 20 deg.

Figure 5-2. Compute NACA 0012 airfoil coefficients

ComputeAirfoilCoeff: CL, RE = 700000.0

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
L

α (deg)

ComputeAirfoilCoeff: CD, RE = 700000.0

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C
D

α (deg)

ComputeAirfoilCoeff: CM, RE = 700000.0

0 2 4 6 8 10 12 14 16 18 20
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

C
M

α (deg)

To compute the lift curve slope
1 clA = CLAlpha(airfoil)
2

3 clA =
4

5 5.9331
6

7 CLAlpha(airfoil)

Compare the value with the theoretical lift curve slope of 2π.

Figure 5-3. NACA 0012 lift curve slope

CLAlpha

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

cL

α (deg)

Data
Linear

25

5.3. COEFFICIENTS FROM SHAPES CHAPTER 5. AIRFOIL MODELS

5.3 Coefficients from Shapes

The function ComputeCoeffFromShape will generate lift, drag and moment coefficients for an airfoil. The airfoil
may be entered as a file with x and y coordinates, an image file (such as a .jpg) or as a data file

Files of numbers are a text file with a .dat suffix and consist of a line with a name and then a list of x, y pairs.

[cL, cD, cM] = ComputeCoeffFromShape(x, y, n, alpha)

Type

ComputeCoeffFromShape

for a demo. It will demonstrate an airfoil from a .jpg file. Figure 5-4 on the next page gives the results.

Figure 5-4. Airfoild shape and results

airfoil

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.04
−0.02

0
0.02
0.04
0.06

y

x

Airfoil Coefficients

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

c L

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2
c D

0 1 2 3 4 5 6 7 8 9 10
−0.5

−0.4

−0.3

−0.2

−0.1

c M

Alpha (deg)

The computation uses the vortex panel method [8] and is for inviscid flow only. n can be a number of panels (top and
bottom) or a list of x-coordinates for both top and bottom. at 1.0. It is suitable for quick analyses of the changes of
shape of an airfoil (for example due to an airfoil.)

26

CHAPTER 6

BLADE MODELS

6.1 Introduction

This section discusses the functions for modeling the wind turbine blades. Figure 6-1 on page 28 shows the vertical
axis wind turbine blade coordinates. Figure 6-2 on page 29 shows the horizontal axis wind turbine blade coordinates.

6.2 Vertical Axis Wind Turbine Blade Models

6.2.1 Torque Model

The normal and tangential force are found from the following expression.

FN =
1

2
ρW 2S (CL(α) cosα0 − CD(α) sinα0) (6-1)

FT =
1

2
ρW 2S (−CL(α) sinα0 − CD(α) cosα0) (6-2)

The torque is just RFT . S is the area of the blade.

Functions LiftAnlytMdl.m and DragAnlytMdl.m provide analytical approximations to common lift and drag
profiles.

The VAWT torque model is available in TorqueVAWT.m.

6.3 Horizontal Axis Wind Turbine Blade Models

6.3.1 Torque Model

The aerodynamic torque and power captured by a horizontal axis wind turbine is a function of the tip speed ratio
and blade pitch. Many coefficient based models are available in the literature. An example model found in [6] has
been incorporated in the functionCP2D.m. This model is called by the function TorqueHAWT.m, which returns the
HAWT (rotor) torque and power.

27

6.4. DOUBLE STREAMTUBE MODELS CHAPTER 6. BLADE MODELS

Figure 6-1. Vertical axis wind turbine blade coordinates

Vw

Vb

 -Vb

Vw-Vb = -W

W

W

!0

"

!

direction of rotation

Note: For all angles, the arrows indicate the direction
in which they are defied to be positive

#

": Rotor angle

!0: Angle between the relative velocity vector and
the tangent to the rotor circle

!: Angle of attack

#: Blade pitch angle

6.4 Double Streamtube Models

A simplified model for the double-multiple stream tube theory applicable to straight-bladed VAWT is used for mod-
eling and analysis. This model is derived from references [16, 5, 14]. There are many variants of this model in the
literature. The version presented in [16] (closest to our application) is not described in sufficient detail, and it may
have some inconsistencies or errors. In order to obtain a model suitable for our application a derivation using the
underlying concepts of the double-multiple stream tube theory was performed, and is summarized below. We note that
any semi-analytical or empirical VAWT modeling approach needs to be validated for a specific application through
computational fluid dynamics and/or wind tunnel testing.

Figure 6-3 on page 29(a) shows a schematic of the angular notation for an individual blade. In the figure Vb is the
velocity of the blade in the inertial frame, and V is the effective wind velocity seen by the blade. We note that the
double-multiple stream tube theory provides a method to calculate V, the magnitude of V as a function of the far-
upstream wind velocity Vinf . Vector −W represents the velocity of the blade relative to the effective wind. The angle
θ represents the blade rotation angle, α1 is the angle from W to Vb, α is the total angle of attack (the angle from W
to the chord line of the blade), and γ is the blade pitch angle. The aerodynamic drag force D acts in the direction of
−W, whereas the aerodynamic lift force L acts perpendicular to W. The resultant speed where W = |W|, X is the

28

CHAPTER 6. BLADE MODELS 6.4. DOUBLE STREAMTUBE MODELS

Figure 6-2. Horizontal axis wind turbine blade coordinates

!r

W

"

D

L

"
0

#

Neutral Line

Figure 6-3. Blade angles and Schematic of two actuator disks and associated wind speeds

V

Vb

 -Vb

-W

W

!1

!

direction of rotation

"

#

(a) Blade angles

VinfVVeV'V''

(b) Double actuator disk

tip speed ratio, R is the radius of the turbine and θ̇ = Ω is the angular rate of rotation is given by

W = V
�
(X − sin θ)2 + cos2 θ (6-3)

X =
|Vb|
V

=
RΩ

V
(6-4)

The total angle of attack of a pitch-actuated blade is composed of two components α1 and γ:

α = α1 + γ. (6-5)

Component α1 is due to the geometry of flow conditions, and is given by

α1 = arcsin

�
cos θ�

((X − sin θ)2 + cos2 θ)

�
. (6-6)

Component γ is due to pitch control, and it serves as a control input designed in Section 7.7.1. The double multiple
stream tube model uses the double actuator disc theory, momentum theory and blade element theory to first compute
the effective speed V experienced by a blade at any azimuthal angle θ, and eventually all the aerodynamic effects.

29

6.4. DOUBLE STREAMTUBE MODELS CHAPTER 6. BLADE MODELS

The main feature of the double actuator disc theory is the consideration of two actuator disks placed behind each other,
connected at the center of the turbine as shown in Figure 6-3 on the next page(b). The speeds at the upwind V and
downwind V

�
sides of the rotor are given by

V = uVinf (6-7)
V

�
= uV (2u

�
− 1)Vinf (6-8)

is the speed at center of the rotor. Factors u and u
�

are upwind and downwind interference factors respectively, and
they are computed using momentum theory and blade element theory. Using two actuator disks allows consideration
of asymmetric airfoils, which will be used in Phase II. The speed at far downstream is given by

V
��
= (2u− 1)(2u

�
− 1)Vinf (6-9)

The momentum theory is applied to two sets of stream tubes that cover the actuator disks. The first set of stream tubes
cover the upwind actuator disk. The output of these stream tubes feeds the set that covers the downwind actuator disk.
This arrangement allows computation of the total stream wise force acting on the upwind and downwind halves of the
wind turbine separately.

For the upwind half, at each stream tube the stream wise force according to the momentum theory is

dFx,u = 2AuρV (V − Vinf), (6-10)

where ρ is the density of air, and

Au = Rdθ | cos θ| dz, (6-11)

dz is the width of the stream tube in the plane perpendicular to the flow. Substituting equation (6-11) in equation (6-10)
we get for the upstream and downstream

dFx,u = 2Rdθ | cos θ| dz ρV (V − Vinf) (6-12)

= 2ρR | cos θ|V 2u− 1

u
dθdz (6-13)

dFx,d = 2AdρV
�
(V

�
− Ve) (6-14)

= 2ρR | cos θ|V
�2u

� − 1

u� dθdz, (6-15)

According to the blade element theory the stream wise force acting on the blade element (within a stream tube) is
given by

dFx =
1

2
ρW 2c̃ dz (CN cos θ + CT sin θ) , (6-16)

where CN and CT are the normal and tangential force coefficients of the airfoil, c̃ is a measure of the probability of a
blade being within a stream tube (located at the azimuthal angle θ):

c̃ =
NcΩdt

2π
=

Ncdθ

2π
. (6-17)

We note that in terms of the airfoil lift coefficient CL and drag coefficient CD the normal and tangential coefficients
are given by:

CN = CL cosα+ CD sinα (6-18)
CT = CL sinα− CD cosα (6-19)

Substituting equation (6-17) in equation (6-16) we get

dFx =
1

2
ρW 2Ncdθ

2π
dz (CN cos θ + CT sin θ) (6-20)

30

CHAPTER 6. BLADE MODELS 6.4. DOUBLE STREAMTUBE MODELS

The stream wise force computations of the momentum theory and blade element theory given can be equated. For the
upwind half this equation (obtained from equations (6-13 and 6-20)) is

2ρR | cos θ|V 2u− 1

u
dθdz =

1

2
ρW 2Ncdθ

2π
dz (CN cos θ + CT sin θ) . (6-21)

After some algebra the above equation reduces to

(u− 1)| cos θ|dθ =
Ncu

8πR
(CN cos θ + CT sin θ)

W 2

V 2
dθ (6-22)

Integrating both sides from θ = −π/2 to θ = π/2 we get

2(u− 1) = fuu, (6-23)

where fu is the upwind and downwind functions are given by

fu =

� π/2

−π/2

Nc

8πR
(CN cos θ + CT sin θ)

W 2

V 2
dθ (6-24)

fd =

� 3π/2

π/2

Nc

8πR
(CN cos θ + CT sin θ)

W 2

V 2
e

dθ (6-25)

A simple iteration procedure as described in [16] can be used to compute u and u
�
. Initially a value is assumed for u.

Now for a given Ω and Vinf it is possible to compute V and the tip speed ratio X . The lift and drag coefficients are
obtained by interpolating known experimental data using the local α and Reynolds number Reb

Reb =
Wc

ν∞
, (6-26)

where ν∞ is the kinematic viscosity. This allows computation of the upwind function fu. Using equation (6-23) a new
value of u is computed. The iteration is carried out until there is a convergence in u. After u has been computed, Ve

can be computed using Ve = (2u− 1)Vinf . Now a similar iteration procedure as above can be used to compute u
�
.

The aerodynamic pitching moment acting on the blade at any time can be computed as

Mp =
1

2
ρW 2cCM , (6-27)

where the pitching moment coefficient CM is obtained by interpolating known experimental data using the local α and
Reynolds number Reb. For a wind turbine with active pitch control the actuator torque depends on Mp, the moment
of inertia of the blade about the pitching axis, and the desired pitch profile. Since the blades of a VAWT experience
a constantly changing angle of attack and flow velocity, unsteady aerodynamic loads may have a significant effect
on the turbine performance. In our simulations for studying aerodynamic performance we consider the dynamic stall
effects predicted by the Gormont model modified by Cardona as described in [13, 7]. An alternative dynamic stall
model that can be considered in Phase II is the MIT model modified by Noll and Ham as described in [13, 11]. The
Gormont model provides a simple empirical relation for the effective angle of attack to be used for lift, drag and
moment computations. This effective angle of attack is a function of the actual angle of attack α, its rate α̇, airfoil
properties and the speed of the blade relative to the effective wind, W .

The aerodynamic torque used in system simulations can be computed using

Tr =
N�

i=1

1

2
ρW 2

i cCT,i, (6-28)

where CTi and Wi are the torque coefficient and effective relative blade speed computed at the ith blade.

Figure 6-4 on page 32 shows results for an example simulation using the above aerodynamic model. The parameters in
the simulation are set to reflect the prototype constructed as part of the Phase I project, and are summarized in Table 6-
1 on the next page. For this simulation no pitch control is used. The average power generated is 13 Watts. We note that

31

6.4. DOUBLE STREAMTUBE MODELS CHAPTER 6. BLADE MODELS

in this simulation the angular speed was held fixed at 150 rpm, and that the simulation does not include the variation
in angular speed due to rotor dynamics and generator control. These aspects are described in Section ??, and included
in the system simulation described in Section ??. In Section 7.7.1 we present another simulation incorporating a pitch
control algorithm, and demonstrate the improvement in energy extraction.

Figure 6-4. Constant Pitch Simulation

Power versus !

!100 !50 0 50 100 150 200 250 300
!100

!50

0

50

100

150

200

P
o

w
e

r
(W

a
tt

s
)

Azimuthal angle, (deg)

Tangential and Normal forces versus !

!100 !50 0 50 100 150 200 250 300
!10

!5

0

5

10

T
a

n
g

e
n

ti
a

l
F

o
rc

e
 F

T
 (

N
)

!100 !50 0 50 100 150 200 250 300
!50

0

50

100

N
o

rm
a

l
F

o
rc

e
 F

N
 (

N
)

Azimuthal angle, (deg)

Angle of attack, its derivative, and !" versus #

!100 !50 0 50 100 150 200 250 300
!20

0

20

"
 (

d
e
g
)

!100 !50 0 50 100 150 200 250 300
!10

!5

0

5

d
"

/d
t

!100 !50 0 50 100 150 200 250 300
!1

0

1

!
"

Azimuthal angle, (deg)

Table 6-1. Simulation Parameters

Parameter Value Parameter Value
Airfoil NACA 0012 Number of blades N 3
Wind speed Vinf 5 m/s Angular speed Ω 150 rpm
Chord length 0.2032 m Air density ρ 1.21 kg/m3

Blade length 1.5240 m Kinematic viscosity ν 1.48× 10−5 m2/s
Rotor radius R 0.9735 m Dynamic Stall Model Gormont Model [13]

The double multiple stream tube models are demonstrated in the demo DMSDemo for a 2 bladed VAWT and DMSDemoPC3Bld
for a 3 bladed model.

32

CHAPTER 7

CONTROL DESIGN

7.1 Introduction

In this chapter we present control design examples for horizontal axis wind turbine (HAWT) and a vertical axis wind
turbine (VAWT) systems. We also discuss analytical modeling functions that can used for control design purposes.

7.2 Maximum Power Tracking

The aerodynamic power Pa captured by the rotor of the wind turbine is usually given by the expression

Pa =
1

2
ρπR2CP (λ)V

3, (7-1)

where ρ is the air density, R is the rotor radius, CP is the power coefficient, v is the effective wind speed, and λ = ΩrR
V

is the tip-speed ratio, where Ωr is the rotor angular speed. We note that the power coefficient is a function only of λ,
since the pitch of the turbine is held constant in our example. Correspondingly the torque in the rotor Tr is expressed
in terms of the torque coefficient CQ = CP /λ:

Tr =
1

2
ρπR2CQ(λ)V

2. (7-2)

The torque coefficient takes a maximum value CQmax at a certain optimum tip-speed ration λmax. Typically just a
discrete set of values for the torque coefficient is available. A good approximation of the torque coefficient that is
commonly employed [4] is a second-order polynomial of the form:

CQ(λ) = CQmax −KQ(λ− λQmax)
2, (7-3)

where KQ > 0 is a constant.

The dynamic model of the wind turbine drive-train can be described by the following equations [4]:




θ̇s
Ω̇r

Ω̇g



 =




0 1 −1

−Ks
Jr

−Bs
Jr

Bs
Jr

Ks
Jg

Bs
Jg

−Bs
Jg



 ·




θs
Ωr

Ωg



+




0
Tr
Jr

−Tg

Jg



 , (7-4)

where θs is the torsion angle depicting the difference in angular positions of the rotor and generator, Ωg is the angular
speed of the generator, Tg is the generator torque, Ks and Bs are the stiffness and damping of the transmission

33

7.2. MAXIMUM POWER TRACKING CHAPTER 7. CONTROL DESIGN

respectively, Jr and Jg are the moments of inertia of the rotor and generator respectively. For a variable-speed fixed-
pitch turbine, Tg regulated by the power generation unit can be considered to be a control input to the above drive-train
dynamics.

The goal of the maximum power tracking control law is to follow a control strategy, specified as a locus of operating
points. The operating points are equilibria of the system modeled by equation (7-4). The control strategy, usually
chosen based on trade-offs between energy extraction and load alleviation, picks a desired steady rotor speed Ωr,e for
each steady wind speed Ve, thereby effectively determining the steady operating torque Tr,e. From the first component
of equation (7-4), the steady generator speed Ωg,e = Ωr,e. The corresponding torsion angle θs,e and generator torque
Tg,e can be calculated by solving the equilibrium relations corresponding to the last two components of equation (7-4).

For the purpose of deriving the control law let us rewrite equation (7-4) in terms of deviations from the operating point:




˙̄θs
˙̄Ωr
˙̄Ωg



 =




0 1 −1

−Ks
Jr

−Bs
Jr

Bs
Jr

Ks
Jg

Bs
Jg

−Bs
Jg



 ·




θ̄s
Ω̄r

Ω̄g



+




0
T̄r
Jr

− T̄g

Jg



 , (7-5)

where (̄.) denotes the variable minus its value at the operating point. The equilibrium (operating point) in terms of the
new variables is the origin (0, 0, 0).

Using equations (7-2)-(7-3) and the definition of λ we can write

T̄r = −K1Ω̄
2
r +K2Ω̄r, (7-6)

where K1, K2 are constants.

In order to compute the control law (T̄g) and prove the stability of the closed-loop system, consider the Lyapunov
function candidate,

Φ =
1

2

��
2Jr + Jg

Jr

�
Ksθ̄

2
s + Jg

�
Ω̄r − Ω̄g

�2
+ JrΩ̄

2
r + JgΩ̄

2
g

�
. (7-7)

It is straightforward to verify that Φ is a valid Lyapunov function candidate [7]. Now, we compute

Φ̇ = −Bs

��
Jr + Jg

Jr

��
Ω̄r − Ω̄g

�2
+ Ω̄2

r + Ω̄2
g

�
+

Jg + Jr
Jr

Ω̄2
r

�
K2 −K1Ω̄r

�

−Jg
Jr

Ω̄rΩ̄g

�
K2 −K1Ω̄r

�
− T̄g

�
Ω̄r − 2Ω̄g

�
. (7-8)

We chose a control law of the form
T̄g = mΩ̄r + nΩ̄g, (7-9)

where m and n are constants. Further, we set

n− 2m =

�
1 +

Jg
Jr

�
K2. (7-10)

Substituting the inequalities −Ω̄3
r ≤ 1

2

�
Ω̄4

r + Ω̄2
r

�
, and Ω̄gΩ̄2

r ≤ 1
2

�
Ω̄4

r + Ω̄2
g

�
in equation (7-8) we get the following

relation,

Φ̇ ≤ −aΩ̄2
r − bΩ̄2

g − c
�
Ω̄r − Ω̄g

�2
, (7-11)

where,

a = m+Bs −
Jg + Jr

Jr

�
K1

2
+K2

�
− 2Jg + Jr

2Jr
K1Ω̄

2
r (7-12)

b = 2m+Bs −
Jg
2Jr

(2K2 +K1) (7-13)

c = Bs

�
Jr + Jg

Jr

�
. (7-14)

34

CHAPTER 7. CONTROL DESIGN 7.2. MAXIMUM POWER TRACKING

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
!0.6

!0.4

!0.2

0

0.2

0.4
Plot 1: m = 0.183

Time (s)

S
ta

te
s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
!0.6

!0.4

!0.2

0

0.2

0.4
Plot 2: m = 0.256

Time (s)

S
ta

te
s

0 10 20 30 40 50 60 70 80 90 100
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
Plot 3: Tracking changing desired tip!speed!ratio

Time (s)

T
ip

 S
p

e
e

d
 R

a
ti
o

Desired tip!speed!ratio

Actual tip!speed!ratio

Figure 7-1. Closed-loop simulations for a variable-speed, fixed-pitch WECS

From the above equations we see c > 0, and if we pick m large enough we also have a, b > 0 for some
��Ω̄r

�� ≤ A,
where A is some constant. Thus,

Φ̇ ≤ 0 (7-15)

for all x :=
�
θ̄s, Ω̄r, Ω̄g

�
∈ BA, where BA is a ball of radius A in the space S1 × R2. This proves local asymptotic

stability of the closed-loop system with the region of attraction given by BA. In fact, the control law also guarantees
local exponential stability. Figure 7.2 demonstrates the application of the control law in a drive-train dynamics
simulation. Plots 1 and 2 of the figure show the convergence of the states of the system to the desired operating point
(the origin in both cases) for two different values of the control gain. The larger m provides faster convergence. Plot 3
shows the result of a simulation where the system is made to track a desired tip-speed ratio profile. Good performance
is observed in all simulations.

We note that the size of the region of attraction (determined by A) is a function of the adjustable control gain m.
Choosing a larger value of m will lead to a faster transient and larger region of attraction. However, a large m may not
be desirable if the wind has dominant high frequency components, since this may lead to larger mechanical loads.

35

7.3. GENERATOR CONTROL CHAPTER 7. CONTROL DESIGN

7.3 Generator Control

Generator models available in the toolbox are described in Chapter 10. Consider the model represented by equa-
tions (10-22)-(10-22). The control strategy prescribes a certain desired generator torque or a desired generator angular
speed, which must be realized by applying control voltages ud and uq . A simple way to compute u = (ud, uq) is
to calculate the steady state values of the voltage to apply as a feedforward component uff and then use a linear
control law to regulate the system about the desired steady state values. At steady state id = 0. The steady state iq
corresponding to a desired generator torque or generator speed can be computed using equations (10-19), (10-23) by
setting dωm

dt = 0.

7.4 Control Design Functions

There are several linear control options available in the toolbox. Here, we describe the QCR function for performing a
linear quadratic control design. The QCR function creates a regulator of the form

u = −Kx (7-16)

minimizing the cost functional

J =

� �
1

2

�
uTRu+ xTQx

�
+ uTNx+ xTNu

�
dt (7-17)

given the linear dynamics

ẋ = Ax+Bu. (7-18)

The function call with sample input and output (taken from the linear quadratic regulator design used in the HAWTSim
demo for designing the feedback component of generator control) is

>> a = 1.0e+03 *[-0.0178 0 -0.0016; 1.2616 -0.1593 0.1387;-0.0403 -0.1387
-0.1593]

a =

1.0e+03 *

-0.0178 0 -0.0016
1.2616 -0.1593 0.1387

-0.0403 -0.1387 -0.1593

>> b = [0 0;37.0370 0;0 37.0370]

b =

0 0
37.0370 0

0 37.0370

>> kR = QCR(a, b, diag([1 0.1 0.1]), eye(2))

kR =

0.0865 0.0118 -0.0003
-0.0029 -0.0003 0.0114

Several control design functions are included in the toolbox. Table 7-1 on page 37 provides a summary of a selection
of those functions:

36

CHAPTER 7. CONTROL DESIGN 7.5. HAWT DEMO

Table 7-1. Selected Control Design Functions

Function Name Description

Acker Computes the gain for desired pole locations using Ackermann’s formula so that the closed-loop
system has the desired poles

C2DZOH Create a discrete time system from a continuous system assuming a zero-order-hold at the input
CButter Build a continuous Butterworth Filter
CGram Compute the controllability gramian for a continuous time system
CToD Create a discrete time compensator from a continuous time compensator
DBode Generates a Bode plot for a discrete time system
Delay Create a model of a delay using Pade approximants
DigitalFilter Implement a digital filter
EVAssgnC Use eigenvector assignment to design a controller
FResp Compute the frequency response of the system
GPMargin Computes gain and phase margins
LQC Linear quadratic controller
Nyquist Generate a Nyquist plot from a statespace object or gain/phase data
PDDesign Design a proporational-derivative controller
PhasePlane Implement a phase-plane controller
PID Design a proporational-integral-derivative controller
Riccati Solves the matrix Riccati equation
RootLocus Generate the root locus for a single-input-single-output system
S2Z Transform an s-plane transfer function into the z-plane
Step Generate a step response of the system
SVPlot Compute the maximum and minimum singular values
Windup Implements anti windup compensation
ZFresp Generates the frequency response for a digital filter

7.5 HAWT Demo

The file HAWTSim.m contains a demonstration of HAWT control. The HAWT blade model is described by TorqueHAWT.m.
The generator is modeled as a permanent magnet brushless machine in DQ coordinates. The HAWT system is lin-
earized about the desired operating point. The generator control feedforwards the expected control voltage and then
controls about that voltage with the linear quadratic regulator. We assume that we measure all states including turbine
rotational speed and generator currents. Figure 7-2 on page 38 shows a plot from the HAWT control demo.

7.6 DFIG Control

This section discusses the control of a wind turbine with a DFIG generator. In this demonstration we control the speed
of the generator to maximize the power output and control the reactive power to drive it to zero.

We will assume a fixed β of 0 deg. Then the optimal λ is 8. This leads to the desired mechanical rotation speed of

ωW = W
8

R
(7-19)

The desired mechanical rotation rate is
ωm =

ωW

n
(7-20)

where n is the gearbox ratio. The electrical angular rate is

37

7.6. DFIG CONTROL CHAPTER 7. CONTROL DESIGN

Figure 7-2. HAWT Control Demo

ωe = pωm (7-21)

where p is the number of pole pairs. We will assume a 2 pole pair generator so that

ωe = p
ωW

n
(7-22)

A GE 2.5 MW wind turbine is a model with a 50 m blade and nominal wind speed of 12.5 m/s. The shaft rate is 1800
rpm in this case (3600 rpm/2).

We have four control voltages, two for the rotor and two for the stator. The overall control/simulation flow is shown in
Figure 7-3 on the following page. It shows the toolbox functions used in the simulation. Unlike the simulation above
we will output 3 phase currents.

Figure 7-3. DFIG simulation

Propeller
TorqueHAWT.m

Gearbox
Gearbox.m

DFIG
DFIGRHS.m

Parks
Parks.m

a

b

c

d

q

Controller

u

i

!

20 rpm
60 Hz

3600 rpm

v

The first step is to find the steady-state values for the currents and voltages. Our inputs are

1. Qref

38

CHAPTER 7. CONTROL DESIGN 7.6. DFIG CONTROL

2. ωm - mechanical speed
3. vds and vqs - the stator direct and quadrature voltages
4. Tm - the mechanical torque
5. ω - the reference frequency

The flux equations are

ψqs = (Ls + Lm)iqs + Lmiqr (7-23)
ψds = (Ls + Lm)ids + Lmidr (7-24)
ψdr = (Lr + Lm)idr + Lmids (7-25)
ψqr = (Lr + Lm)iqr + Lmiqs (7-26)

(7-27)

We need to solve the following nonlinear equations for currents.

0 = vds −Rsids + ωψqs (7-28)
0 = vqs −Rsiqs − ωψds (7-29)

Te =
3

2
p (ψdsiqs − ψqsids) (7-30)

Qref = 3 (vdsiqs − vqsids) (7-31)

The currents are computed numerically in the function DFIGEquilibrium which uses downhill simplex, i.e.
fminsearch. The rotor voltages are computed in the function from

vdr = Rridr − ωsψqr (7-32)
vqr = Rriqr + ωsψdr (7-33)

This provides the equilibrium solution for the current and the feedforward values for the rotor voltages. An example
1 d.u = [120;120;0;0];
2 d.p = 2;
3 d.lM = 47.3e-3; % Mutual inductance (H)
4 d.lR = 50e-3; % Rotor inductance (H)
5 d.lS = 50e-3; % Stator inductance (H)
6 d.rR = 0.38; % Rotor resistance (Ohm)
7 d.rS = 0.05; % Stator resistance (Ohm)
8 d.omega = 2*pi*60; % Synchronous speed (rad/s)
9 d.tM = 1000; % Mechanical torque (Nm)

10 d.j = 0.5; % Inertia (kg-mˆ2)
11 qRef = 0;
12 omegaM = 1800*pi/30;
13

14 [uR, x] = DFIGEquilibrium(qRef, omegaM, d);
15 d.u(3:4) = uR;
16 [xDot, tE, q] = DFIGRHS(x, 0, d)
17

18 xDot =
19

20 -8.2982e-06
21 1.283e-05
22 4.0339e-06
23 -6.2371e-06
24 1.1336e-06
25 188.5
26

27 tE =
28

29 -1000
30

31 q =

39

7.7. VAWT DEMO CHAPTER 7. CONTROL DESIGN

32

33 -1.2149e-07
34 33052

The first five elements of xDot are small showing that we are near equilibrium.

7.7 VAWT Demo

The file VAWTSimDemo.m contains a demonstration of variable pitch VAWT control. The VAWT blade model is
described by VAWTDemoBldMdlRHS.m. The generator is modeled simply as providing a feedback (control) torque.
Then, the dynamics can be described using the following equations:

Jr
dφ

dt2
= τ − τg (7-34)

Jbi
dγ

dt2
= upi , (7-35)

where Jr is the total moment of inertia of the VAWT rotor, Jbi is the moment of inertia of the ith blade and upi is
the corresponding pitch control torque. τg is the feedback control torque from the generator. The total aerodynamic
torque is given by

τ =
n�

i=1

τi =
n�

i=1

CT,i
1

2
ρAW 2R, (7-36)

where τi is the aerodynamic torque on each individual blade, n is the number of blades, ρ is the density of air, A is the
reference area, R is the radius of the rotor, and CTi is the tangential force coefficient, made up of contributions from
the lift and drag coefficients:

CT,i = − (CL,i sinαi + CD,i cosαi) (7-37)

The total power captured by the rotor is given by

PT =
n�

i=1

τi
dφ

dt
(7-38)

We choose individual blade pitch to maximize the lift to drag ratio over the entire cycle of rotation in such a way that
the force on each blade contributes positively to power extracted for most of the rotation cycle. The following control
strategy is employed for the pitch control torque, up:

up = −Kp (α− αref)−Kdγ̇, (7-39)

αref =

�
−αm if α0 > 0
αm if α0 < 0

, (7-40)

where γ̇ is the pitch rate, Kp, Kd are control gains, α is the angle of attack, and αref is a reference angle of attack
computed as above. αm is the reference angle of attack magnitude. Figure 6-1 on page 28 provides a definition of α0.
The value of αm is chosen as high as possible, but sufficiently smaller than the magnitude of the stall angle of attack.
The pitch angle control law ensures that the blade does not get into stall, and that the tangential force component on
the blade contributing to positive power extraction is high throughout the entire rotation cycle. The electromagnetic
torque control is chosen to stabilize the rotation speed of the blade to a desired value, Ωdes:

τg = Kτg,1 (Ω− Ωdes) +Kτg,2

�
(Ω− Ωdes) .dt, (7-41)

where Kτg,1, Kτg,2 > 0 are control gains. For an ambient effective wind speed, Vw, there is an associated optimal
rotation speed that can be determined by experiments. Generator torque control is used so that the VAWT tracks this
optimal rotor speed. Figure 7-4 on the facing page shows plots from the VAWT control demo.

40

CHAPTER 7. CONTROL DESIGN 7.7. VAWT DEMO

Figure 7-4. VAWT Control Demo

41

7.7. VAWT DEMO CHAPTER 7. CONTROL DESIGN

7.7.1 Pitch Control Algorithms

The pitch control algorithm proposed in Phase I attempts to keep the local total angle of attack just below stall for
the entire rotation cycle. In order to make the control algorithm implementable, the demanded blade pitch must not
have any discontinuities. A generic form of the total angle of attack profile of the form shown in Figure 7-5 on
page 42 is considered. We note that the pitch control actuator will have torque and speed constraints that may limit
the implementation of desired total angle of attack profile. The speed constraints are included explicitly in our system
simulation studies. The stepper motor used in the Phase I prototype has been designed to provide the required torque
with sufficient factor of safety. Control and system simulations incorporating the torque constraint can be further
studied in Phase II using the test data gathered from the Phase I prototype.

Figure 7-5 shows results for an example simulation where the maximum pitching speed is restricted to 18.9 rpm,
which is close to the limit which the motors on the Phase I prototype can deliver (although they were specified to have
a higher speed limit). The simulation parameters are the same as that given in Table 6-1 on page 32, except for the
steady rotor speed which is set to 130 rpm. The angles in the desired total angle of attack profile are set as follows:
θ1 = −60 degrees, θ2 = 60 degrees, θ3 = 120 degrees, θ4 = 240 degrees and αmax = 9 degrees. The average power
generated in this case is 72 Watts, much higher compared to the power without pitch control at 150 rpm.

Figure 7-5. Desired Total Angle of Attack Profile and Variable Pitch Simulation

! (deg)

!1 !2 !3 !4

!max

-!max

Power versus !

!100 !50 0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

P
o

w
e

r
(W

a
tt

s
)

Azimuthal angle, (deg)

Tangential and Normal forces versus !

!100 !50 0 50 100 150 200 250 300
!5

0

5

10

T
a

n
g

e
n

ti
a

l
F

o
rc

e
 F

T
 (

N
)

!100 !50 0 50 100 150 200 250 300
!50

0

50

100

N
o

rm
a

l
F

o
rc

e
 F

N
 (

N
)

Azimuthal angle, (deg)

Angle of attack, its derivative, and !" versus #

!100 !50 0 50 100 150 200 250 300
!10

0

10

20

"
 (

d
e

g
)

!100 !50 0 50 100 150 200 250 300
!10

!5

0

5

d
"

/d
t

!100 !50 0 50 100 150 200 250 300
!20

!10

0

10

!
"

Azimuthal angle, (deg)

Desired total angle of attack profile

!100 !50 0 50 100 150 200 250 300
!10

!8

!6

!4

!2

0

2

4

6

8

10

D
e
s
ir
e

d
 t
o

ta
l
a
n

g
le

 o
f
a

tt
a
c
k
 (

d
e
g

re
e

s
)

! (degrees)

42

CHAPTER 8

ESTIMATION

8.1 Overview

The toolbox includes software for developing estimation algorithms. The algorithms can be used to solve any estima-
tion problem. Particular technologies included are

1. Fixed Gain Kalman Filters

2. Variable Gain Kalman Filters

3. Extended Kalman Filters

4. Unscented Kalman Filters

5. Fault Detection

The toolbox focuses on recursive estimation. Recursive estimation is simply taking a measurement and using it to
update an existing estimate of the state of the system. The measurement need not be a state, but for all states to be
observed the measurement must be related to the states or derivatives of the states.

In this module, recursive estimators can be divided into six classes:

1. Fixed gain estimators

2. Variable gain estimators for linear systems

3. Variable gain estimators for nonlinear systems in which the plant (the state dynamics) are linearized about the
current state and propagated as a linear system. This type of system is used for attitude estimation. This is also
called the Extended Kalman Filter.

4. Variable gain estimators for nonlinear systems in which the plant is numerically integrated. This type of system
is used for orbit estimation. This is also called the Continuous Discrete Extended Kalman Filter.

5. Unscented Kalman Filters. These filters compute multiple states and covariances for each in effect computing
the statistics online.

This chapter will discuss estimation in general with examples from attitude and orbit estimation.

43

8.2. FIXED GAIN ESTIMATORS CHAPTER 8. ESTIMATION

8.2 Fixed Gain Estimators

Fixed gain estimators are written in the form

xk+1 = axk + buk + k(y − cxk) (8-1)

where xk is the state vector at step k, a is the state transition matrix, b is the input matrix, uk is the input vector, y is
the measurement vector and c is the measurement matrix that relates the states to the measurements.

The gain matrix, k may be computed in many different ways. Note that this, in contrast to a conventional noise filter,
requires an estimate of the inputs. However, the filter returns the vector of all observable states which is needed for
linear quadratic controllers.

This kind of estimator can be designed using the toolbox function QCE, for continuous systems, and DQCE for discrete
systems. If the former is used, the filter must be converted to discrete time in a second step. If the latter is used you
must be careful that the filter state matrix is balanced and well-conditioned.

An interesting example is given in KalmanFilterDemo in which two angle measurements are available for single
degree of freedom case. One of the states is the unknown misalignment between the two sensors. Figure 8-1 on
page 44 shows the covariance for this problem.

Figure 8-1. Fixed gain Kalman filter

Kalman Filter:Sqrt Covariance

0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

An
gl

e

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5
x 10-3

G
yr

o
Bi

as

0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

Al
ig

n
Bi

as

Step

8.3 Variable Gain Estimators

Two routines are available for variable gain estimators. These are KFilter for conventional Kalman filters and
UDKalmanFilter, for filters in which the plant matrix is formulated in Upper Diagonal (UD) form. The latter has
better numerical properties. Both filters are demonstrated for double integrator plant in the demo UDKFDemo. The
results are compared in Figure 8-2 on the next page.

44

CHAPTER 8. ESTIMATION 8.4. EXTENDED KALMAN FILTER

Figure 8-2. UD filter

KF and UD

1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

1.5

2

St
at

e
U

D

1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

1.5

2

St
at

e
KF

step

As expected with double precision arithmetic both filters produce the same result. With single precision arithmetic
the UD form should be better results. Note that KFilter eliminates the problem of instabilities due to asymmetric
covariance matrices by forcing it to be symmetric each step.

8.4 Extended Kalman Filter

The Extended Kalman Filter is used for attitude determination and many other applications. In an Extended Kalman
filter the state transition matrix and measurement matrix is linearized about the current estimated state. This is in
contrast to the linearized Kalman Filter in which the measurement and state transition matrices are linearized about a
predetermined state or state trajectory.

8.5 Continuous Discrete Extended Kalman Filter

8.5.1 Introduction

The script CDKFDemo demonstrates the use of a Continuous Discrete Kalman Filter with a nonlinear spring model,
and a nonlinear position measurement.

The first plot in Figure 8-3 on page 46 shows that the estimate converges to the true value of the spring position less a
bias. The second shows the noisy measurement.

45

8.6. UNSCENTED KALMAN FILTER CHAPTER 8. ESTIMATION

Figure 8-3. Continuous discrete Kalman filter

CDKF

0 50 100 150 200 250 300 350 400
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

dX

0 50 100 150 200 250 300 350 400
0.86

0.88

0.9

0.92

0.94

0.96

zM

Time

8.6 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is able to achieve greater estimation performance than the Extended Kalman
Filter (EKF) through the use of the unscented transformation (UT). The UT allows the UKF to capture first and second
order terms of the nonlinear system. Instead of just propagating the state, the filter propagates the state and additional
sigma points which are the states plus the square roots of rows or columns of the covariance matrix. Thus the state
and the state plus a standard deviation are propagated. This captures the uncertainty in the state. It is not necessary to
numerically integrate the covariance matrix.

46

CHAPTER 9

ELECTRICAL MODELS

9.1 Introduction

Electrical models are included for building electrical circuits used for wind turbines. These models can be incorporated
into WTSim models or used independently. This chapter shows how to use them independently.

9.2 Circuit Element Models

9.2.1 Introduction

The circuit elements included are

1. diode

2. bridge rectifier

3. capacitor

4. inductor

5. transformer

6. matrix converter

7. three phase rectifier/inverter

9.2.2 Diode

A diode passes current if the voltage across the diode exceeds the threshold. The function

vO = Diode(g, v)

models a simple diode.v is compared against g.vDiode. If v(k) is greater than g.vDiode then iO(k) is i(k).
Otherwise it is zero. Since this is a nonlinear device the state space model is only valid when the diode is conducting.

47

9.2. CIRCUIT ELEMENT MODELS CHAPTER 9. ELECTRICAL MODELS

9.2.3 Bridge Rectifier

A bridge or full wave rectifier passes current if the magnitude of the voltage across the diode exceeds the threshold.
Negative voltages are flipped to positive. This is the basis for AC to DC conversion

vO = RectifierFullWave g, v)

9.2.4 Capacitor

The capacitor is modeled as

i = C
dv

dt
(9-1)

where i is the current passing through the capacitor, C is the capacitance and v is the voltage across the capacitor. The
model says that once the voltage stops changing the current goes to zero. The impedance of a capacitor is

Z =
1

sC
(9-2)

where s = jω.

9.2.5 Inductor

The inductor is modeled as
v = L

di

dt
(9-3)

where L is the inductance. The model says that when the current stops changing the voltage across the inductor is
zero. All motors are composed of coils. The impedance of an inductor is

Z = sL (9-4)

where s = jω.

9.2.6 Grid Model

The grid is modeled as a voltage source and a series impedance

Zg = Rg + jXg (9-5)

where j denotes an imaginary number. The voltage drop across the element is

v = iZg (9-6)

The impedance can be written as
Zg = Rg + sLg (9-7)

where s = jω. ω is the frequency of oscillation in the circuit which is 60 Hz for the grid connection. The equivalent
differential equation for this element is

v = iRg + Lg
di

dt
(9-8)

where v is the voltage drop across the element. The voltage across the terminals is therefore

v = vg − iRg − Lg
di

dt
(9-9)

Typical values for Rg is 1 Ohm and for Lg is 0.1 mH (milli henries).

48

CHAPTER 9. ELECTRICAL MODELS 9.2. CIRCUIT ELEMENT MODELS

Figure 9-1. Grid

vg

Zg

v

+

-

9.2.7 Transformer

The transformer model just performs a voltage and current scaling based on the ratio of turns.

[v2, i2] = Transformer(v1, i1, a)

The current ratio, a can be n or 1/n where n is the ratio of turns in the two inductors.

A dynamical model right-hand-side in the DQ frame is

iDot = TransformerRHS(i, t, d)

This function can be called by RK4. The data structure defining the transformer parameters is

% d (1,1) Data structure
% .L (1,1) Inductance (H)
% .R (1,1) Resistance (ohms)
% .omega (1,1) Reference frequency (rad/s)
% .u1 (2,1) [uD;uQ]
% .u2 (2,1) [uD;uQ]

9.2.8 Matrix Converter

A matrix converter can be used for efficiently processing the three-phase electrical output from the VAWT. Matrix
converters use an array of controlled, bidirectional semiconductor switches to convert AC power from one frequency
to another. They generate a variable output voltage with unrestricted frequency. Matrix converters do not have a
dc-link circuit and do not use large energy storage elements.

MOSFETs (for low power) and IGBTs (for high power) enable implementation of bidirectional switches make the
matrix converter technology very attractive for AC power handling. Figure 5 shows a schematic of the matrix converter
set up [Wheeler et al, 2002], showing the power stage containing nine bidirectional switches, the input filter block and
the clamp circuit. The input filter minimizes the high frequency components in the input currents and reduces the
impact of perturbations of input power. The input filter can be realized using inductor - capacitor combinations, with
parallel damping resistors. The clamp circuit provides overcurrent/overvoltage protection, and is implemented using
fast recovery diodes.

In MatConSSDemo.m a switching control strategy based on [10] is implemented. Figure 9-2 on page 50 shows
results of the steady state simulation. The generator input at 300 Hz is converted to a 60 Hz output for interfacing with
the grid. A switching frequency of 7200 Hz is employed. There is a duty cycle factor that can be adjusted to regulate
the ratio of output to input voltage, up to a maximum value. The output is passed through a low-pass filter to filter out
the high frequency switching harmonics.

49

9.3. UTILITY CHAPTER 9. ELECTRICAL MODELS

Figure 9-2. Matrix Converter Steady State Simulation

9.2.9 Three Phase Rectifier

This model takes a 3 phase input and given switch states s produces a rectified output. The states are +1 or 0. The
even switches invert the sign of the output.

vO = RectifierThreePhase(g, v, s)

9.3 Utility

9.3.1 Phases
v = NPhase(w0, t, n)

Generates an n by length(t) array.

50

CHAPTER 10

GENERATOR MODELS

10.1 Introduction

Their are numerous generators used in wind turbines. Some are

1. Permanent Magnet Synchronous [2]

2. Induction [1]

3. Switched Reluctance [20, 17, 19, 12, 9, 15]

The toolbox provides induction and permanent magnet generator models for use in WTSim. Permanent Magnet and
Switched Reluctance are both types of synchronous generators. Induction generators are asynchronous. Permanent
Magnet and Switched Reluctance generators rely on power electronics control to work with wind turbines. There are
many other types of generators which can be added to the toolbox by using the included functions as models.

All generators have a moving and stationary part. In a rotating machine the moving part is the rotor and the fixed part
is the stator. One part generates a field the other has coils in which currents are produced by the motion of the moving
part driven by wind produced torque. The field can be generated by

1. Permanent magnets

2. A coil

The coil can be energized by induction or by an electrical source.

10.2 Electrical and Mechanical Degrees

In a rotating machine the number of mechanical degrees is 360 per rotation. Electrical degrees refers to the number of
degrees the electrical wave moves while the rotor rotates. The number of electrical degrees is

θe = pθm (10-1)

where p is the number of pole pairs. A machine with a positive and negative pole (two magnets, for example) has one
pole pair. The relationship between rates is the same

ωe = pωm (10-2)

51

10.3. DIRECT QUADRATURE MODEL CHAPTER 10. GENERATOR MODELS

10.3 Direct Quadrature Model

The direct quadrature model transforms from a n-phase rotor to a model which consists of a direct axis winding which
is the equivalent of one of the windings but aligned directly with the field. The quadrature winding leads the field
winding by 90 electrical degrees. The general transformation is




ud

uq

u0



 = Tuph (10-3)

where for an n-phase machine T is a 3-by-n matrix and uph is an n-by-1 vector of phase voltages. This transformation
maps balanced sets of phase currents into constant currents in the d-q frame. This transformation is known as the Park’s
transformation. For a 3 phase machine it is

T =




cos(θ) cos(θ − 2π

3) cos(θ + 2π
3)

sin θ) sin(θ − 2π
3) sin(θ + 2π

3)
1√
2

1√
2

1√
2



 (10-4)

The function ABToDQ will do an 3 phase to dq transformation.

10.4 Per Unit Normalization

We do not use per unit normalization in the toolbox models but it is available using the function PerUnitNormalization.
The normalization quantities are

PB = QB = SB =
VBIB
np

(10-5)

ZB =
VB

IB
(10-6)

YB =
IB
VB

(10-7)

λB =
VB

ωe0
(10-8)

TB =
p

ωe0
PBH =

1
2Jω

2
e0

npPB
(10-9)

λB is the base flux and p is the number of pole pairs. np is the number of phases. ωe0 is the base electrical frequency.
Neither time nor frequency are normalized. The base voltage is the line-to-line voltage divided by the square root of
the number of phases. Table 10-1 on page 53 shows the normalizations

For example, the equation for rotor spin rate change is

dωr

dt
=

Te − Tm

J
(10-10)

where J is inertia, Te is the electrical torque and Tm is the mechanical torque.
1 lM = 69.31;
2 j = 0.089;
3 p = 3*746;
4 vL = 220;
5 nPh = 3;
6 nPP = 2;
7 f = 60;

52

CHAPTER 10. GENERATOR MODELS 10.5. PERMANENT MAGNET GENERATOR MODEL

Table 10-1. Per unit normalizations

Parameter Units Normalization
Resistance Ohm ZB

Capacitance Farad ZB
ωe0

Inductance Henry ZB
ωe0

Inertia kg-m2 npPB
1
2ω2

e0

Voltage Volt 1
VB

Current Amp 1
IB

Torque Nm
Flux 1

λB

8 d = PerUnitNormalization(p, vL, nPh, nPP, f)
9 puLM = PerUnitNormalization(p, vL, nPh, nPP, f,’inductance’, lM);

10 disp(sprintf(’Lm = %8.1f mH %8.1f pu’,lM, puLM));
11 puJ = PerUnitNormalization(p, vL, nPh, nPP, f,’inertia’, j);
12 disp(sprintf(’J = %8.3f kg-mˆ2 H = %8.4f s’,j, puJ));
13

14 d =
15

16 pB: 746
17 vB: 127.02
18 iB: 5.8732
19 rB: 21.626
20 lB: 0.057366
21 cB: 0.057366
22 omegaB: 188.5
23 tB: 11.873
24 lambdaB: 0.67385
25 pNom: 2238
26

27 Lm = 69.3 mH 1208.2 pu
28 J = 0.089 kg-mˆ2 H = 0.7065 s

10.5 Permanent Magnet Generator Model

Brushless permanent magnet machines are of types

1. Surface-mounted magnets, conventional stator

2. Surface-mounted magnetics, air-gap stator winding

3. Internal magnets (flux-concentrating)

The rotor may be inside or outside.

The equations for a permanent magnet machine in direct-quadrature axes are

uq = Rsiq + ωr(Ldid + ψ) +
dLqiq
dt

(10-11)

ud = Rsid − ωrLqiq +
d(Ldid + ψ)

dt
(10-12)

ψ is the flux due to the permanent magnets. The electrical torque is

Te =
3

2
p((Ldid + ψ)iq − Lqiqid) (10-13)

53

10.5. PERMANENT MAGNET GENERATOR MODEL CHAPTER 10. GENERATOR MODELS

where p is pole pairs.

The mechanical torque equation is

Te = Tw + bωm + J
dωm

dt
(10-14)

where b is the mechanical damping coefficient, Tw is the wind torque, J is the inertia and the relationship between
mechanical and electrical angular rate is

ωe = pωm (10-15)

In a magnet surface mount machine with coils in slots Ld = Lq = L and ψ and the inductances are not functions of
time. The equations simplify to

uq = Rsiq + ωeLid + ωeψ + L
diq
dt

(10-16)

ud = Rsid − ωeLiq + L
did
dt

(10-17)

Te =
3

2
pψiq (10-18)

Thus the torque is a function of the quadrature current only. The rotor torque due to the wind is

Tw =
1

2
ρπR2Cp(λ,β)W 3

ωm
(10-19)

where ρ is the atmospheric density, W is the wind speed and R is the rotor radius. The rotor angular velocity is the
same as the generator mechanical angular rate because this is a direct drive system. β is the pitch angle. The tip speed
ratio λ is

λ =
ωmR

W
(10-20)

The power extracted from the wind by the rotor is Twωm or

Pw =
1

2
ρπR2Cp(λ,β)W

3 (10-21)

Thus for a given wind speed we want to select ωm and β to maximize Cp.

The final set of dynamical equations are

ωm =
dθ

dt
(10-22)

0 =
1

2
ρπR2Cp(λ,β)W 3

ωm
− 3

2
pψiq + bωm + J

dωm

dt
(10-23)

ud = Rsid − pωmLiq + L
did
dt

(10-24)

uq = Rsiq + pωmLid + pωmψ + L
diq
dt

(10-25)

The equations are nonlinear and bilinear in ωm and iq and id.

The control vector is

u =

�
ud

uq

�
(10-26)

and the state vector is

x =





θ
ωm

id
iq



 (10-27)

54

CHAPTER 10. GENERATOR MODELS 10.6. DOUBLY FED INDUCTION GENERATOR

10.6 Doubly Fed Induction Generator

The Doubly Fed Induction Generator (DFIG) is a generator in which both the rotor and stator are connected to external
sources. The rotor is typically a wound rotor. The torque equation is [3]

dωm

dt
=

Tm + Te

J
(10-28)

J is the inertia.

The electrical torque is

Te =
3

2
p (ψdsiqs − ψqsids) (10-29)

where r is rotor, s is stator, q is quadrature and d is direct. The synchronous speed is

ωs = ω − pωm (10-30)

where p is pole pairs. ω is the reference frame rotation speed which need not be constant. The flux linkage equations
are

ψds = (Ls + Lm)ids + Lmidr (10-31)
ψqs = (Ls + Lm)iqs + Lmiqr (10-32)
ψdr = (Lr + Lm)idr + Lmids (10-33)
ψqr = (Lr + Lm)iqr + Lmiqs (10-34)

(10-35)

The dynamical flux equations are

dψds

dt
= vds −Rsids + ωψqs (10-36)

dψqs

dt
= vqs −Rsiqs − ωψds (10-37)

dψdr

dt
= vdr −Rridr + ωsψqr (10-38)

dψqr

dt
= vqr −Rriqr − ωsψdr (10-39)

(10-40)

Assuming that the inductances are constant we can get the dynamical equations in terms of phase currents

(Ls + Lm)
dids
dt

+ Lm
didr
dt

= vds −Rsids + ωψqs (10-41)

(Ls + Lm)
diqs
dt

+ Lm
diqr
dt

= vqs −Rsiqs − ωψds (10-42)

(Lr + Lm)
didr
dt

+ Lm
dids
dt

= vdr −Rridr + ωsψqr (10-43)

(Lr + Lm)
diqr
dt

+ Lm
diqs
dt

= vqr −Rriqr − ωsψdr (10-44)

(10-45)

We get an inductance matrix of the form

L =





Ls + Lm 0 Lm 0
0 Ls + Lm 0 Lm

Lm 0 Lr + Lm 0
0 Lm 0 Lr + Lm



 (10-46)

55

10.6. DOUBLY FED INDUCTION GENERATOR CHAPTER 10. GENERATOR MODELS

and

L
d

dt





ids
iqs
idr
iqr



 =





vds +Rsids + ωsψqs

vqs +Rsiqs − ωsψds

vdr +Rridr + σωsψqr

vqr +Rriqr − σωsψdr



 (10-47)

The reactive power from the stator is
Q = 3 (vdsiqs − vqsids) (10-48)

The active power from the stator is
P = 3 (vdsids + vqsiqs) (10-49)

There are similar equations for the rotor. The state vector is

x =





θ
ωr

ids
iqs
idr
iqr




(10-50)

56

CHAPTER 11

MECHANICAL

11.1 Overview

The Mechanical folder contains design tools for the mechanical subsystem. These include models for mechanisms,
joint design calculation functions, and calculations specific to wind turbine design.

11.2 Mechanism Models

11.2.1 Introduction

Functions modeling common mechanical parts are included for mechanical design analysis. These mechanism models
input user-supplied part specifications and output performance parameters that can be used in system design. The
mechanisms included are

1. bearing

2. coupling

3. gear box

4. helical gear

5. spur gear

11.2.2 Bearing

The file BearingLife.m models a bearing under operating conditions given by the user. The function returns
expected bearing life based on the following equation:

L =
106

60
n(C/P)t (11-1)

where L is the expected lifetime of a bearing, n is the rotational speed of operation, C is the bearing load rating, P
is the equivalent load acting on the bearing, and t is an exponent dependent on the type of bearing used. For ball
bearings, this value is 3.

57

11.3. JOINT CALCULATORS CHAPTER 11. MECHANICAL

11.2.3 Coupling

CouplingStress.m calculates the axial and shear stresses acting on a coupling based on load conditions and the
rotational speed of operation.

11.2.4 Rectangular Beam

Likewise, RectangularBeam.m calculates the axial and shear stresses acting on a rectangular beam based on its
load conditions.

11.2.5 Gear Box

An ideal gear box is included. The ratio n greater than or less than zero depending on the direction of

[omegaOut, torqueOut] = Gearbox(n, omegaIn, torqueIn)

The model is

ωo =
1

n
ωi (11-2)

T0 = nTi (11-3)

where T is torque and ω is angular rate.

11.2.6 Gears

The function SpurGear.m determines the maximum tooth load, output torque and power for a common spur gear
based on its dimensions and tooth form factor.

[Load, Torque, Power] = SpurGear(d)

Similarly, HelicalGear.m computes these values for a helical gear, in addition to the maximum axial thrust load.

[Load, Torque, Power, Thrust] = HelicalGear(d)

11.3 Joint Calculators

11.3.1 Introduction

Joint calculation functions contain computations based on design guidelines for various joining methods, including

1. welds

2. interference fits

11.3.2 Welds

WeldThroatArea.m uses ISO standards to calculate the minimum throat area for joining with welds, with the input
being the load supported by the welded parts.

a = WeldThroatArea(l)

58

CHAPTER 11. MECHANICAL 11.4. BLADE STATIC APPROXIMATIONS

11.3.3 Interference Fits

The file InterferenceFit.m gives the amount of torque that an interference fit can transfer. Typing

>> help FileName

in your MATLAB window gives input and output information on that function. The help information for InterferenceFit.m
gives the following:

>> help InterferenceFit

Calculates torque transferred in an interference fit, and gives the
factor of safety for the stress distribution in the fit.

Form:
[T, FOS] = InterferenceFit (d)

Inputs

d (1,1) Data structure

.delta (1,1) Total diametral interference (m)

.ri (1,1) Inner radius of shaft (m)

.ro (1,1) Outer radius of hub (m)

.r (1,1) Radius of interference (m)

.Eo (1,1) Young’s modulus (Pa)

.Ei (1,1) Young’s modulus (Pa)

.mu (1,1) Viscosity (Pa*s)

.nuo (1,1) Poisson’s ratio of Hub

.nui (1,1) Poisson’s ratio of shaft

.l (1,1) Length of engagement (m)

Outputs

T (1,1) Torque (N*m)
FOS (1,1) Factor of Safety

Reference: Robert L. Norton. Machine Design: An Integrated Approach.

Upper Saddle River, NJ: Prentice Hall, 2000

11.4 Blade Static Approximations

11.4.1 Introduction

Blade statics approximation functions account for various design calculations for including

1. drag force
2. hinge moment
3. moment of inertia
4. bending stress
5. bearing distances

59

11.4. BLADE STATIC APPROXIMATIONS CHAPTER 11. MECHANICAL

11.4.2 Drag Force

The maximum drag force acting on a plate-shaped blade as it travels through a fluid can be calculated using DragForce.m.
The user must input the blade height, chord, speed, and the fluid density.

[F] = DragForce(d)

11.4.3 Hinge Moment

HingeMoment.m calculates the moment at the hinge joint of a blade on a vertical axis wind turbine.

M2 = HingeMoment(d)

11.4.4 Moment of Inertia

The file NACABladeMOI.m gives an approximation for the moment about an axis on a symmetrical NACA blade.

MOI = NACABladeMOI(d)

11.4.5 Bending Stress

RotBeamBending models a beam rotating about an axis that is perpendicular to it. It gives the bending stress in the
beam based on input parameters. This calculation is a simple model for the bending stress acting upon the vanes of a
VAWT.

[bS, FOS] = RotBeamBending(d , r , omega)

11.4.6 Bearing Distances

For cases where two bearings are needed on a rotorshaft, VAWTBearingDistance calculates the minimum distance
between the bearings based on the characteristics of the shaft.

dist = VAWTBearingDistance(d, yS, F, FoS)

60

CHAPTER 12

MULTIBODY MODELS

12.1 Introduction

This chapter discusses the multibody model included in the toolbox. This model is of a generic wind turbine with a
flexible mast and blades and with additional articulated degrees of freedom between the two. It can be configured to
be a vertical axis or horizontal axis wind turbine. The model is based on Tsai [18]. The multi-body model runs within
the WCTSim framework.

12.2 Background

12.2.1 Tree

The multibody model is a topological tree that can have any number of branches but no closed loops. The base node
must be attached to the ground.

12.2.2 Hinges

Two types of hinges are used in this assembly. The first is a revolute joint. This is a joint with one rotational-
degree-of-freedom and no translational degrees of- freedom. The second is a prismatic joint. This is a joint with
one translational degree-of-freedom and no rotational degrees-of-freedom. The two types of joints are illustrated in
Figure 12-1 on page 62. The figure also shows a link which is two joints connected by a solid bar We define a link as
a solid piece of material with hinges on each end. This link has a revolute joints at both ends. Note that the axis zi− 1
is associated with joint i and the axis zi is associated with i + 1. For a revolute joint the axis z is along the rotation
axis. For a prismatic joint, the z axis is along the translational axis.

12.2.3 Computations

In the forward computation the angular velocities, linear velocities, angular accelerations, linear accelerations and
gravity vector are propagated forward from the base to each joint.

The forward rates for revolute joints are

vk = vk−1 + ωk × rk (12-1)
ωk = ωk−1 + zk−1θ̇k (12-2)

61

12.3. EXAMPLE CHAPTER 12. MULTIBODY MODELS

Figure 12-1. Joints

Joint i zi-1

zi

joint i + 1

Collar

It is necessary to keep track of the elements in the path to each hinge since there may be branches.

The forward accelerations for revolute joints are

vk = v̇k−1 + ω̇k × rk + ωk × (ωk × rk) (12-3)
ω̇k = ω̇k−1 + zk−1θ̈k + ωk−1 × zk−1θ̇k (12-4)

Once the velocities and accelerations have been propagated to the end of the chain, the joint forces and moments can
be computed started at the end of each chain.

kfk,k−1 =k fk+1,k −mk
kg −k f∗

k (12-5)
knk,k−1 =k nk+1,k + (krk +k rck)×k fk,k−1 −k rck ×k fk+1,k −k n∗

k (12-6)

wherefk,k−1 is the resulting force exerted on link k by link k − 1 at point Ok−1, f∗
k is the inertia force exerted at the

center of mass of link k, nk,k−1 is the resulting moment exerted on link k by link k−1 at point Ok−1, n∗
k is the inertia

moment exerted at the center of mass of link k, rk is the position vector of the origin of the kth link frame with respect
to the (k − 1)th link frame and rck is the position vector of the center of mass of link k with respect to the kthlink
frame.

12.3 Example

As an example we will model a horizontal axis wind turbine with 3 blades. The model is shown in Figure 12-2 on
page 63. Starting from the base, the model has the following degrees of freedom

62

CHAPTER 12. MULTIBODY MODELS 12.3. EXAMPLE

Figure 12-2. Multibody model

Mast

Rotational Yaw Hinge

Generator Gearbox

Shaft Shaft

Pitch

Blade

Lag

Flap

1. mast cantilevered to the ground
2. rotational yaw hinge
3. torsional spring shaft
4. gearbox
5. torsional spring shaft
6. pitch
7. lag hinge
8. flap hinge
9. blade

The gearbox model allows any function to be included that relates torque and rotational rate at the two sides of the
gearbox. Thus backlash and other nonlinear effects can be included in the model. The generator model is any desired
generator function in the toolbox.

Type WTSim to start the simulation. Under Setup File click Load and select WT VAWTSetup.m. The setup file
specifies which models (m-files) will be used for each block in the wind turbine simulation. In this setup file, the
“Blades” block is modeled with WT MultiBody.m. To begin the simulation, set the Duration to 0.1 and hit Start.
When it is done look under model “Blades” for the states. The multi-body model used in this simulation has a single
blade assembly that rotates around a vertical shaft. Note that the purpose of the simulation is to illustrate the general

63

12.3. EXAMPLE CHAPTER 12. MULTIBODY MODELS

use of multi-body dynamics, rather than to provide a detailed engineering model for a VAWT. Figure 12-3 on page 64
shows the GUI.

Figure 12-3. WTSim with multibody model

To create a complete wind turbine simulation with multi-body dynamics, one would need to:

1. set up an appropriate multi-body model for a wind turbine

2. if necessary, create an alternate controller for wind turbine sims that sends the appropriate voltage commands,

3. compute the power and torque generated to supply as outputs

64

CHAPTER 13

UTILITIES

13.1 Introduction

This chapter discusses utility functions. These functions are found in the Utility folder of the toolbox. This chapter
only covers a few of the utility functions.

13.2 Reynold’s Number

The function ReynoldsNumber computes the Reynold’s number for a fluid.

rE = ReynoldsNumber(u, l, nu)

The inputs are the wind speed, the length and the kinematic viscosity. The wind speed may be a vector. If you type

ReynoldsNumber

You will get Figure 13-1 on the facing page shows the loaded data.

Figure 13-1. Reynolds number

Reynolds Number

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14
x 105

R
ey

no
ld

s
N

um
be

r

Velocity (m/s)

The units in the header are metric but any set of consistent units will work.

65

13.3. DRAWHAWT CHAPTER 13. UTILITIES

13.3 DrawHAWT

This function animates a horizontal axis wind turbine. This is meant to show the movement of the blades and turbine
in a cartoon form. The function allows for variable yaw angle, generator angle, propeller angle and blade angles.
The length, diameter of the tower and the length and chord of the blades can be specified. All other parameters are
generated automatically.

You first need to initialize the function

DrawHAWT(’initialize’, name, lBlade, chordBlade, lTower, dTower, nBlades)

Then update each time step

DrawHAWT(’update’, yaw, angleGen, angleProp, angleBlade, windVector)

When you are done close the window

DrawHAWT(’close’)

For a demo type DrawHAWT. At the end of the animation you will see Figure 13-2 on the next page.

Figure 13-2. HAWT at the end of the demo animation

13.4 DrawVAWT

This function animates a vertical axis wind turbine. This is meant to show the movement of the blades and turbine in
a cartoon form. The function is invoked with the following three calls.

DrawVAWT(’initialize’, name, lBlade, lArm, chordBlade, lTower, dTower, nBlades)
DrawVAWT(’update’, angleGen, angleProp, angleBlade, windVector)
DrawVAWT(’close’)

The following code runs a demo. It is the same demo that you will get if you type DrawVAWT.

n = 100;
DrawVAWT(’initialize’, ’Demo VAWT’, 1, 0.5, 0.1, 1, 0.1, 3)
angleGen = linspace(0,100*pi);
angleProp = linspace(0, 10*pi);
angleBlade = zeros(3,n);
wind = [-ones(1,n);zeros(2,n)];
pause(3)
for k = 1:n

66

CHAPTER 13. UTILITIES 13.5. LIFTANDDRAGCOEFF

DrawVAWT(’update’, angleGen(k), angleProp(k), angleBlade(:,k), wind);
pause(0.1)

end
pause(3)
DrawVAWT(’close’);

Figure 13-3. VAWT at the end of the demo animation

13.5 LiftAndDragCoeff

This function generates lift and drag coefficients using analytical relationships between the physical parameters of an
airfoil.

[cL, cD] = LiftAndDragCoeff(d, alpha)

Figure 13-4 on page 68 shows lift and drag coefficients for an airfoil found by typing

LiftAndDragCoeff

Lift is linear with angle of attack but because the drag coefficient goes as the square of the lift coefficient we see a
quadratic relationship. This function does not model stall or other effects. You can generate coefficients from blade
models using the Airfoil functions.

13.6 PowerFromActuatorDisk

This function computes power from actuator disk theory.

[p, cP] = PowerFromActuatorDisk(rho, A, v0, a)

This provides a limit on how much power a wind turbine can produce. a is defined from the relationship v3 =
v0(1 − 2a) where v0 is the wind speed in front of the machine and v3 is the wind speed at the end of the wake. Note
that v3 = 0 is NOT the optimum value. The optimum value is with a = 1/3 so cP = 16/27. This can never be
achieved in practice due to aerodynamic losses.

Figure 13-5 on the next page shows power as a function of wind velocity

PowerFromAD

67

13.6. POWERFROMACTUATORDISK CHAPTER 13. UTILITIES

Figure 13-4. Lift and drag coefficients

Lift and Drag Coefficients

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

c L

0 1 2 3 4 5 6 7 8 9 10
0.081

0.082

0.083

0.084

0.085

0.086

c D

α (deg)

Figure 13-5. Power from actuator disk theory

Power From Actuator Disk

0 2 4 6 8 10 12 14 16 18 20
10−3

10−2

10−1

100

101

102

103

104

Po
w

er
 (W

/m
2)

Velocity (m/s)

68

CHAPTER 14

WINDDATA

14.1 Introduction

This chapter discusses the wind data models available in the toolbox.

14.2 Wind Data

Wind data is available for the continental United States (lower 48 states) Hawaii and Alaska. The data is read in from
the binary files using

1 LoadShapeFile

For example to load in the Alaska data type
1 LoadShapeFile(’akwindclp.shp’)
2

3 Shape file: akwindclp
4 Shape type is Polygon
5

6 Boundaries:
7 xMin 0.00
8 yMin -2.00
9 xMax 2.00

10 yMax 2.00
11 zMin 2.00
12 zMax 0.00
13 mMin 0.00
14 mMax 0.00
15

16 nPolygons =
17

18 728
19

20 ff =
21

22 AREA
23

24 ff =
25

26 PERIMETER
27

28 ff =

69

14.2. WIND DATA CHAPTER 14. WINDDATA

29

30 ANNUALDD05
31

32 ff =
33

34 ANNUALDD05
35

36 ff =
37

38 GRID_CODE

Figure 14-1 on page 70 shows the wind intensity. Dark red is the highest wind and white is very little wind.

Figure 14-1. Alaska

175 180 185 190 195 200 205 210 215 220 225 230

40

45

50

55

60

65

70

75

80

x

y

When using high resolution models the map may not appear when running on Mac OS X due to Java memory limita-
tions.

The other models are “I48wndatlas.shp” and “hiwindpolyclp.shp”. The function returns a data structure
1 % w (1,1) Data structure
2 % .lon {n} (1,:) Longitude of polygon vertices (deg)
3 % .lat {n} (1,:) Latitude of polygon vertices (deg)
4 % .wind(n) Wind values
5 % .lonRange (1,2) Longitude range [min max] (deg)
6 % .latRange (1,2) Latitude range [min max] (deg)
7 % .name (1,:) File name

This data structure can be converted to wind as a function of latitude and longitude using
1 w = LoadShapeFile(filename);
2 wind = WindFromLatLon(w)

This function searches all the polygons generated by “LoadShapeFile” and computes the wind at each latitude and
longitude. As a consequence it will take a long time if you ask for a lot of points at once. If you are going to
generate data for a lot of latitudes and longitudes it is best to run this function and save the resulting data in a .mat file.
Figure 14-2 on the next page shows a plot generated by the function.

70

CHAPTER 14. WINDDATA 14.2. WIND DATA

Figure 14-2. Wind for latitudes and longitudes

50
55

60
65

70
75

170
180

190
200

210
220

230
0

2

4

6

8

10

Latitude (deg)Longitude (deg)

W
in

d

71

14.2. WIND DATA CHAPTER 14. WINDDATA

72

CHAPTER 15

WIND MODELS

15.1 Introduction

Wind models include stochastic and dynamical models.

15.2 Dynamical Models

15.2.1 WindspeedHours
1 WindspeedHours(kRef, hRef, cRef, h, v, dV, u)

This function computes the hours that the wind is between v(k) +/- dV/2.

Figure 15-1 on page 73 shows the demo results

Figure 15-1. Wind hours versus wind speed

Hours at the windspeed with a 0.50 mph bin

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

H
ou

rs

Wind Speed (mph)

73

15.2. DYNAMICAL MODELS CHAPTER 15. WIND MODELS

WindspeedHours

15.2.2 WindDeterministic
1 WindDeterministic(d)

This is a deterministic wind model. It models the tower effect.

Figure 15-2 on the next page shows the deterministic wind demo.

Figure 15-2. Deterministic wind

Deterministic wind

0 1 2 3 4 5 6 7 8 9 10
12.85

12.9

12.95

13

13.05

13.1

13.15

13.2

W
in

d
Sp

ee
d

(m
/s

)

Time (sec)

15.2.3 WindStochastic
1 WindStochastic(mode, d)

Generates a discrete time model using a zero order hold for the wind noise filters. First call with

1 WindStochastic(’init’, d)

to initialize the model. Then call

1 w = WindStochastic(’run’, d)

to get the stochastic wind model. Figure 15-3 on the facing page shows the deterministic wind demo.

15.2.4 WindAdmittance
1 [a,b,c,d] = WindAdmittance(harm, dTF, dT)

Creates a wind admittance filter of the form

xk+1 = axk + buk (15-1)
yk = cxk + duk (15-2)

74

CHAPTER 15. WIND MODELS 15.2. DYNAMICAL MODELS

Figure 15-3. Stochastic wind

Stochastic wind

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5

W
in

d
Sp

ee
d

(m
/s

)

Time (sec)

if a time step is entered otherwise it generates

ẋ = ax+ bu (15-3)
y = cx+ du (15-4)

Figure 15-4 on the next page shows the admittance filter Bode plot

Figure 15-4. Admittance wind

Input 1 to Output 1

10−2 10−1 100 101 102
−80

−60

−40

−20

0

M
ag

ni
tu

de
 (d

b)

10−2 10−1 100 101 102
−100

−50

0

50

100

An
gl

e
(d

eg
)

Frequency (rad/sec)

75

15.2. DYNAMICAL MODELS CHAPTER 15. WIND MODELS

15.2.5 Wind

“Wind” combines all the effects. It generates a discrete time model using a zero order hold for the wind noise filters.
First call with

1 Wind(’init’, d)

to initialize the model. Then call
1 w = Wind(’run’, d) to

to get the wind model. This model is designed for 3 blade horizontal axis wind turbines as the harmonic filters are
order 3.

Figure 15-5 on the following page shows the demo.

Figure 15-5. Wind model

Wind

0 1 2 3 4 5 6 7 8 9 10
12.8

12.85

12.9

12.95

13

13.05

13.1

13.15

13.2

13.25

W
in

d
Sp

ee
d

(m
/s

)

Time (sec)

76

BIBLIOGRAPHY

[1] Danish Wind Energy Association. Asynchronous (induction) generators. http://www.windpower.org/
en/tour/wtrb/async.htm.

[2] Danish Wind Energy Association. Synchronous Generators. http://www.windpower.org/en/tour/
wtrb/syncgen.htm.

[3] H. Wayne Beaty and Jr. James L. Kirtley. Electric Motor Handbook. McGraw-Hill, 1998.

[4] F. D. Bianchi, H. De Battista, and R. J. Mantz. Wind Turbine Control Systems: Principles, Modelling and Gain

Scheduling Design. Springer, 2006.

[5] M.C. Claessens. The design and testing of airfoils for application in small vertical axis wind turbines. 2006.
Delft University of Technology Master of Science Thesis.

[6] P. G. Estevez. Modeling of a variable speed wind turbine. Buenos Aires, Argentina, 2007. Universidad de
Buenos Aires Senior Thesis.

[7] J. Cardona. Flow curvature and dynamic stall simulated with an aerodynamic free-vortex model for VAWT .
Wind Engineering, 18(3):135–143, 1984. http://www.awea.org/pubs.

[8] A.M. Kuethe and C. Chow. Foundations of Aerodynamics, Fifth Edition. John Wiley and Sons, 1998.

[9] P Lobato, A. Cruz, J. Silva, and J. Pires, A. The switched reluctance generator for wind power conversion.

[10] H. Nikkhajoei, A. Tabesh, and R. Iravani. A Matrix Converter Based Micro-Turbine Distributed Generation
System. IEEE Transactions on Power Delivery, 20(3):2182–2192, 2005.

[11] R. Noll and N. Ham. Effects of dynamic stall on swecs. Journal of solar energy engineering, 104:96–101, 1982.

[12] Z. Pan, J. Ying, and Z. Hui. Study on switched reluctance generator*. Journal of Zhejiang University SCIENCE,
5(5):594–602, 2004.

[13] N.C.K. Pawsey. Development and evaluation of passive variable-pitch vertical axis wind turbines. 2002. Uni-
versity of New South Wales Doctor of Philosophy Thesis.

[14] D.J. Sharpe. Wind turbine aerodynamics. In Wind energy conversion systems, 1990. edited by L.L. Freris.

[15] Y. Sozer and D. A. Torrey. Closed loop control of excitation parameters for high speed switched-reluctance
generators. 2003.

[16] Y. Staelens, F. Saeed, and I. Paraschivoiu. A straight-bladed variable pitch VAWT concept for improved power
generation. In Proc. 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, 2003.

[17] D. A. Torrey. Switched Reluctance Generators and Their Control. IEEE Transactions on Industrial Electronics,
49(1):3–14, 2002.

[18] L. Tsai. Robot Analysis. Wiley Interscience, 1999.

[19] P. Zai-ping, J. Ying, and Z. Hui. Switched Reluctance Generators for Wind Energy Applications. In Proc. Power

Electronics Specialists Conference, volume 1, pages 559–564, 1995.

77

http://www.windpower.org/en/tour/wtrb/async.htm
http://www.windpower.org/en/tour/wtrb/async.htm
http://www.windpower.org/en/tour/wtrb/syncgen.htm
http://www.windpower.org/en/tour/wtrb/syncgen.htm

BIBLIOGRAPHY BIBLIOGRAPHY

[20] P. Zai-ping, J. Ying, and Z. Hui. Study on Switched Reluctance Generator. Journal of Zhejiang University

SCIENCE, 5(5):594–602, 2004.

78

	Contents
	Introduction
	Organization
	Requirements
	Installation
	Getting Started

	Getting Help
	Matlab Help
	FileHelp
	Introduction
	The List Pane
	Edit Button
	The Example Pane
	Run Example Button
	Save Example Button
	Help Button
	Quit

	Searching in File Help
	Search File Names Button
	Find All Button
	Search Headers Button
	Search String Edit Box

	Technical Support

	Fundamentals
	Classes
	Code Conventions

	Simulation
	Introduction to WTSim
	Getting Started
	Examine a Block
	View / Change the Values of States and Parameters
	Load / Save a Setup File
	Run a Simulation
	Analyze the Results

	Model Functions
	Usage Formats
	Defining the Model I/O
	Model Initialization
	Model Update

	Airfoil Models
	Airfoil Functions
	Introduction
	Loading Data
	Using the Data

	An Example
	Coefficients from Shapes

	Blade Models
	Introduction
	Vertical Axis Wind Turbine Blade Models
	Torque Model

	Horizontal Axis Wind Turbine Blade Models
	Torque Model

	Double Streamtube Models

	Control Design
	Introduction
	Maximum Power Tracking
	Generator Control
	Control Design Functions
	HAWT Demo
	DFIG Control
	VAWT Demo
	Pitch Control Algorithms

	Estimation
	Overview
	Fixed Gain Estimators
	Variable Gain Estimators
	Extended Kalman Filter
	Continuous Discrete Extended Kalman Filter
	Introduction

	Unscented Kalman Filter

	Electrical Models
	Introduction
	Circuit Element Models
	Introduction
	Diode
	Bridge Rectifier
	Capacitor
	Inductor
	Grid Model
	Transformer
	Matrix Converter
	Three Phase Rectifier

	Utility
	Phases

	Generator Models
	Introduction
	Electrical and Mechanical Degrees
	Direct Quadrature Model
	Per Unit Normalization
	Permanent Magnet Generator Model
	Doubly Fed Induction Generator

	Mechanical
	Overview
	Mechanism Models
	Introduction
	Bearing
	Coupling
	Rectangular Beam
	Gear Box
	Gears

	Joint Calculators
	Introduction
	Welds
	Interference Fits

	Blade Static Approximations
	Introduction
	Drag Force
	Hinge Moment
	Moment of Inertia
	Bending Stress
	Bearing Distances

	Multibody Models
	Introduction
	Background
	Tree
	Hinges
	Computations

	Example

	Utilities
	Introduction
	Reynold's Number
	DrawHAWT
	DrawVAWT
	LiftAndDragCoeff
	PowerFromActuatorDisk

	WindData
	Introduction
	Wind Data

	Wind Models
	Introduction
	Dynamical Models
	WindspeedHours
	WindDeterministic
	WindStochastic
	WindAdmittance
	Wind

	Bibliography

