ConjGrad:
--------------------------------------------------------------------------
Solves the least squares problem for
J = 0.5 rho'*W*rho + 0.5*(x-xA)'*S0*(x-xA)
rho = y - h(x)
h/x = H(x)
J/x = g = -H'*W*rho + S0*(x-xA)
Uses the conjugate gradient method to solve the least squares
problem
The next step is
x(k+1) - x(k) = alpha*d(k)
where
d(k) = -g(k) + [(g(k)'(g(k)-g(k-1))/g(k-1)'g(k-1)]d(k-1)
alpha is found by minimizing J with respect to alpha at
each step
--------------------------------------------------------------------------
Form:
[x, k, P, wmr, sr, J, sig, nz] = ConjGrad( F, CF, S0, xA, kX, tol, prog, sd )
--------------------------------------------------------------------------
------
Inputs
------
F [rho,H,W,jL] = F(xA)
CF [J] = CF( alpha, x0, d, S0, xA )
S0 A priori state covariance matrix
xA A priori state
kX States to be found
tol Cost tolerance
prog If not = 0 give progress reports
sd Use steepest descent
-------
Outputs
-------
x Matrix of state vectors
k Number of iterations
P Covariance matrix: inv[S0 + G'WG]
wmr Weighted mean of the residuals
sr Weighted rms deviation of the residuals
J Loss estimate
sig Uncertainty in the estimates
nz Number of measurements used
--------------------------------------------------------------------------
References: Strang, G., Introduction to Applied Mathematics, Wellesley-
Cambridge Press, 1986, pp. 378-379.
--------------------------------------------------------------------------
Children:
Common: General/IsVersionAfter