Path: Orbit/Glideslope
Calculate delta-Vs for glideslope rendezvous. For inbound glideslopes, the commanded velocity should be negative and the final velocity must have a smaller magnitude than the initial velocity. For outbound glidesopes the reverse is true. For circumnavigations, rTarget is the radius and the vector a defines the circumnavigation orbit normal. This function combines the capabilities of Glideslope and GlideslopeCircumnav. There is a built-in demo for a 100 m separation in LEO. See also Glideslope, GlideslopeCircumnav, CWSimAndPlot -------------------------------------------------------------------------- Form: [dVM, t, x] = DVGlideslope( x0, w, N, T, rTarget, vOrA ) -------------------------------------------------------------------------- ------ Inputs ------ x0 (6,1) Initial relative state in LVLH frame w (1) Orbit rate N (1) Number of pulses T (1) Period for glideslope rTarget (3,1) or (1,1) Vector target position in LVLH frame or radius for circumnavigation vOrA (2,1) or (3,1) Commanded initial and final velocity or orbit normal of circumnavigation. A normal of [0;1;0] produces an in-plane orbit. ------- Outputs ------- dVM (3,N) Delta-V in LVLH frame t (1,N) Times to apply the delta-V x (3,N) State at each delta-V point -------------------------------------------------------------------------- Reference: Hablani, Tapper, Bashian et al. "Guidance algorithms for Autonomous Rendezvous of Spacecraft with a Target Vehicle in Circular Orbit," 2001 --------------------------------------------------------------------------
Orbit: Glideslope/CWSimAndPlot Orbit: Glideslope/ClohessyWiltshire SC: BasicOrbit/OrbRate Common: CommonData/SwooshWatermark Common: General/CellToMat Common: General/MatToCell Common: General/Watermark Common: Graphics/NewFig Common: Graphics/Plot2D Common: Graphics/PltStyle Math: Linear/Mag Math: Linear/Unit Math: Solvers/NewtRaph
Back to the Orbit Module page