DVGlideslope:

Path: Orbit/Glideslope

% Calculate delta-Vs for glideslope rendezvous. 
 For inbound glideslopes, the commanded velocity should be negative and the 
 final velocity must have a smaller magnitude than the initial velocity. For 
 outbound glidesopes the reverse is true. For circumnavigations, rTarget is 
 the radius and the vector a defines the circumnavigation orbit normal.
 This function combines the capabilities of Glideslope and GlideslopeCircumnav.
 There is a built-in demo for a 100 m separation in LEO.
--------------------------------------------------------------------------
  Form:
  [dVM, t, x] = DVGlideslope( x0, w, N, T, rTarget, vOrA )
--------------------------------------------------------------------------

  ------
  Inputs
  ------
  x0      (6,1)           Initial relative state in LVLH frame
  w         (1)           Orbit rate
  N         (1)           Number of pulses
  T         (1)           Period for glideslope
  rTarget (3,1) or (1,1)  Vector target position in LVLH frame or 
                          radius for circumnavigation
  vOrA    (2,1) or (3,1)  Commanded initial and final velocity or
                          orbit normal of circumnavigation. A normal of 
                          [0;1;0] produces an in-plane orbit.

  -------
  Outputs
  -------
  dVM  (3,N)   Delta-V in LVLH frame
  t    (1,N)   Times to apply the delta-V
  x    (3,N)   State at each delta-V point
  
--------------------------------------------------------------------------
 Reference: Hablani, Tapper, Bashian et al. "Guidance algorithms
            for Autonomous Rendezvous of Spacecraft with a Target
            Vehicle in Circular Orbit," 2001
--------------------------------------------------------------------------
  See also Glideslope, GlideslopeCircumnav, CWSimAndPlot
--------------------------------------------------------------------------

Children:

Orbit: Glideslope/CWSimAndPlot
Orbit: Glideslope/ClohessyWiltshire
Orbit: OrbitMechanics/OrbRate
Math: Linear/Mag
Math: Linear/Unit
Math: Solvers/NewtRaph

Back to the Orbit Module page