Path: Orbit/Glideslope
% Calculate delta-Vs for glideslope rendezvous.
For inbound glideslopes, the commanded velocity should be negative and the
final velocity must have a smaller magnitude than the initial velocity. For
outbound glidesopes the reverse is true. For circumnavigations, rTarget is
the radius and the vector a defines the circumnavigation orbit normal.
This function combines the capabilities of Glideslope and GlideslopeCircumnav.
There is a built-in demo for a 100 m separation in LEO.
--------------------------------------------------------------------------
Form:
[dVM, t, x] = DVGlideslope( x0, w, N, T, rTarget, vOrA )
--------------------------------------------------------------------------
------
Inputs
------
x0 (6,1) Initial relative state in LVLH frame
w (1) Orbit rate
N (1) Number of pulses
T (1) Period for glideslope
rTarget (3,1) or (1,1) Vector target position in LVLH frame or
radius for circumnavigation
vOrA (2,1) or (3,1) Commanded initial and final velocity or
orbit normal of circumnavigation. A normal of
[0;1;0] produces an in-plane orbit.
-------
Outputs
-------
dVM (3,N) Delta-V in LVLH frame
t (1,N) Times to apply the delta-V
x (3,N) State at each delta-V point
--------------------------------------------------------------------------
Reference: Hablani, Tapper, Bashian et al. "Guidance algorithms
for Autonomous Rendezvous of Spacecraft with a Target
Vehicle in Circular Orbit," 2001
--------------------------------------------------------------------------
See also Glideslope, GlideslopeCircumnav, CWSimAndPlot
--------------------------------------------------------------------------
Orbit: Glideslope/CWSimAndPlot Orbit: Glideslope/ClohessyWiltshire Orbit: OrbitMechanics/OrbRate Math: Linear/Mag Math: Linear/Unit Math: Solvers/NewtRaph
Back to the Orbit Module page