Path: Orbit/OrbitManeuver
% Delta-v for injection into an interplanetary orbit using Olberth's method. First put the spacecraft into an elliptic orbit with a low perigee then do the delta-v to infinity ?---------> Direction of planet / psi / ---------> Departure hyperbola asymptote Since version 1. -------------------------------------------------------------------------- Form: [dV, dV1, dV2, vInf, v, psi, eH] = DVOHohmn( R1, R2, rA, rP, mu, muP ) -------------------------------------------------------------------------- ------ Inputs ------ R1 Heliocentric departure planet orbit radius R2 Heliocentric target orbit radius rA Circular orbit radius about the departure planet rP Perigee radius mu Gravitational parameter of the central planet or sun muP Gravitational parameter of the departure planet ------- Outputs ------- dV Required delta-v dV1 Delta-v of first maneuver dV2 Delta-v of second maneuver vInf The hyperbolic speed at infinity v The heliocentric velocity psi Angle between the target planet velocity vector and the delta-v maneuver eH Eccentricity of the departure hyperbola --------------------------------------------------------------------------
Orbit: OrbitCoord/RARP2A Common: General/DeBlankLT Common: Graphics/Mesh2 Common: Graphics/NewFig Common: Graphics/PltStyle Common: Graphics/XLabelS Common: Graphics/YLabelS Common: Graphics/ZLabelS Math: Linear/DupVect
Back to the Orbit Module page