DVOHohmn:

Path: Orbit/OrbitManeuver

% Delta-v for injection into an interplanetary orbit using Olberth's method. 
   First put the spacecraft into an elliptic orbit with a low perigee then do 
   the delta-v to infinity


        ?---------> Direction of planet
       / psi
      /    ---------> Departure hyperbola asymptote

   Since version 1.
--------------------------------------------------------------------------
   Form:
   [dV, dV1, dV2, vInf, v, psi, eH] = DVOHohmn( R1, R2, rA, rP, mu, muP )
--------------------------------------------------------------------------

   ------
   Inputs
   ------
   R1                    Heliocentric departure planet orbit radius
   R2                    Heliocentric target orbit radius
   rA                    Circular orbit radius about the departure planet
   rP                    Perigee radius
   mu                    Gravitational parameter of the central planet or sun
   muP                   Gravitational parameter of the departure planet

   -------
   Outputs
   -------
   dV                    Required delta-v
   dV1                   Delta-v of first maneuver
   dV2                   Delta-v of second maneuver
   vInf                  The hyperbolic speed at infinity
   v                     The heliocentric velocity
   psi                   Angle between the target planet velocity vector and 
                         the delta-v maneuver
   eH                    Eccentricity of the departure hyperbola

--------------------------------------------------------------------------

Children:

Orbit: OrbitCoord/RARP2A
Common: General/DeBlankLT
Common: Graphics/Mesh2
Common: Graphics/NewFig
Common: Graphics/PltStyle
Common: Graphics/XLabelS
Common: Graphics/YLabelS
Common: Graphics/ZLabelS
Math: Linear/DupVect

Back to the Orbit Module page