Path: Orbit/OrbitManeuver
% Delta-v for injection into an interplanetary orbit using Olberth's method.
First put the spacecraft into an elliptic orbit with a low perigee then do
the delta-v to infinity
?---------> Direction of planet
/ psi
/ ---------> Departure hyperbola asymptote
Since version 1.
--------------------------------------------------------------------------
Form:
[dV, dV1, dV2, vInf, v, psi, eH] = DVOHohmn( R1, R2, rA, rP, mu, muP )
--------------------------------------------------------------------------
------
Inputs
------
R1 Heliocentric departure planet orbit radius
R2 Heliocentric target orbit radius
rA Circular orbit radius about the departure planet
rP Perigee radius
mu Gravitational parameter of the central planet or sun
muP Gravitational parameter of the departure planet
-------
Outputs
-------
dV Required delta-v
dV1 Delta-v of first maneuver
dV2 Delta-v of second maneuver
vInf The hyperbolic speed at infinity
v The heliocentric velocity
psi Angle between the target planet velocity vector and
the delta-v maneuver
eH Eccentricity of the departure hyperbola
--------------------------------------------------------------------------
Orbit: OrbitCoord/RARP2A
Back to the Orbit Module page