## LibrationData:

Path: Orbit/LowEnergyManeuver

% Compute libration point data for the restricted three body problem.
This generates normalized coefficients. Normalization of time is
based on the orbit rate of the secondary relative to the primary.
Type LibrationData for a demo for the sun-earth-moon system
--------------------------------------------------------------------------
Form:
d = LibrationData( system )
--------------------------------------------------------------------------
------
Inputs
------
system (:) Name of two-body system, options:
- 'SEM' Sun - Earth/moon
- 'EM' Earth - moon
-------
Outputs
-------
d (.) Data structure containing the following information
.mu (1,1) Non-dimensional mass of smaller primary body
.mR (1,1) Mass ratio, larger body to smaller body
.L1 (1,1) Non-dimensional distance from smaller body to L1 point
.L2 (1,1) Non-dimensional distance from smaller body to L2 point
.L3 (1,1) Non-dimensional distance from larger body to L3 point
.L4 (1,1) Non-dimensional distance from either body to L4 point
.L5 (1,1) Non-dimensional distance from either body to L5 point
.wXY1 (1,1) Natural frequency of x-y motion at L1
.wXY2 (1,1) Natural frequency of x-y motion at L2
.wZ1 (1,1) Natural frequency of z motion at L1
.wZ2 (1,1) Natural frequency of z motion at L2
.k1 (1,1) Amplitude ratio for L1, Ax = k*Ay
.k2 (1,1) Amplitude ratio for L2, Ax = k*Ay
--------------------------------------------------------------------------

## Children:

Common: Database/Constant

Back to the Orbit Module page