LinOrb:

Path: Orbit/RHSOrbit

% Computes the linearized orbit equations. 
 To get normalized equations with nt as the independent variable, just 
 set n = 1. Pass x as empty to get the state equations. If dT is entered it 
 will generate the discrete time equations

   y      = c*x[k] + d*u[k]
   x[k+1] = a*x[k] + b*u[k]

 otherwise

   y      = c*x + d*u
   dx/dt  = a*x + b*u

--------------------------------------------------------------------------
   Form:
   xD           = LinOrb( x, n, aD )
   [a, b, c, d] = LinOrb( [], n, [], dT )
--------------------------------------------------------------------------

   ------
   Inputs
   ------
   x             (6,1) state [dr;rtheta;z;ddr/dt;drtheta/dt;dz/dt]
   n             (1,1) orbit rate
   aD            (3,1) acceleration vector
   dT            (1,1) time step

   -------
   Outputs
   -------
   a or xD       (6,6) State transition matrix or (6,1) state derivative
   b             (6,3) Input matrix
   c             (3,6) Output matrix (position)
   d             (3,3) Feedthrough matrix

--------------------------------------------------------------------------
	  References:   Kaplan, M., Modern Spacecraft Dynamics and Control, p. 111.
                 Valado, D., Fundamentals of Astrodynamics and Applications, 
                 pp. 348-51.
--------------------------------------------------------------------------

Back to the Orbit Module page