Path: Orbit/RHSOrbit
% Computes the linearized orbit equations. To get normalized equations with nt as the independent variable, just set n = 1. Pass x as empty to get the state equations. If dT is entered it will generate the discrete time equations y = c*x[k] + d*u[k] x[k+1] = a*x[k] + b*u[k] otherwise y = c*x + d*u dx/dt = a*x + b*u -------------------------------------------------------------------------- Form: xD = LinOrb( x, n, aD ) [a, b, c, d] = LinOrb( [], n, [], dT ) -------------------------------------------------------------------------- ------ Inputs ------ x (6,1) state [dr;rtheta;z;ddr/dt;drtheta/dt;dz/dt] n (1,1) orbit rate aD (3,1) acceleration vector dT (1,1) time step ------- Outputs ------- a (6,6) State transition matrix or (6,1) state derivative b (6,3) Input matrix c (3,6) Output matrix (position) d (3,3) Feedthrough matrix -------------------------------------------------------------------------- References: Kaplan, M., Modern Spacecraft Dynamics and Control, p. 111. Valado, D., Fundamentals of Astrodynamics and Applications, pp. 348-51. --------------------------------------------------------------------------
Back to the Orbit Module page