SLPLDeltaV:

Path: Orbit/StraightLine

% Compute delta-V of an ideal power-limited rocket (straight-line)
 Power limit is the only constraint; thrust and exhaust velocity can go to
 zero or infinity. Uses Leitmann's 1961 result that the optimal
 acceleration profile is linear in time. The optimal can be either: 

 * Constrained fuel and time, maximized distance OR 
 * Constrained distance and time, minimized fuel OR
 * Constrained fuel and distance, minimized time.

 The acceleration profile is:

   a(t) = A*(tF-tau-t)

 a is acceleration, A is a constant, tau is a constant, t is mission time,
 tF is the final time.

 Type SLPLDeltaV for a demo.

--------------------------------------------------------------------------
	  Form:
   dV = SLPLDeltaV( A, tau, tF )
--------------------------------------------------------------------------

   ------
   Inputs
   ------
   A       (1,:) Acceleration scale parameter, (m/s^3). Find this using
                 another SLPLFind function, such as SLPLFindMass.
   tau     (1,:) Time between turnaround and tF (s). Find this using
                 another SLPLFind function, such as SLPLFindMass.
   tF      (1,:) Final time (s)

   -------
   Outputs
   -------
   dV      (1,:) Delta-V expended over the course of the mission (km/s)

--------------------------------------------------------------------------
   Reference: Leitmann, George. "Minimum Transfer Time for a Power-Limited
              Rocket." Journal of Applied Mechanics 28, no. 2 (June 1,
              1961): 171-78. https://doi.org/10.1115/1.3641648.
--------------------------------------------------------------------------
   See also: SLPLTrajectory
--------------------------------------------------------------------------

Children:

Common: CommonData/SwooshWatermark
Common: General/CellToMat
Common: General/MatToCell
Common: General/Watermark
Common: Graphics/NewFig
Common: Graphics/Plot2D
Common: Graphics/PltStyle
Common: Graphics/TimeLabl

Back to the Orbit Module page