Path: Orbit/StraightLine
% Compute delta-V of an ideal power-limited rocket (straight-line) Power limit is the only constraint; thrust and exhaust velocity can go to zero or infinity. Uses Leitmann's 1961 result that the optimal acceleration profile is linear in time. The optimal can be either: * Constrained fuel and time, maximized distance OR * Constrained distance and time, minimized fuel OR * Constrained fuel and distance, minimized time. The acceleration profile is: a(t) = A*(tF-tau-t) a is acceleration, A is a constant, tau is a constant, t is mission time, tF is the final time. Type SLPLDeltaV for a demo. -------------------------------------------------------------------------- Form: dV = SLPLDeltaV( A, tau, tF ) -------------------------------------------------------------------------- ------ Inputs ------ A (1,:) Acceleration scale parameter, (m/s^3). Find this using another SLPLFind function, such as SLPLFindMass. tau (1,:) Time between turnaround and tF (s). Find this using another SLPLFind function, such as SLPLFindMass. tF (1,:) Final time (s) ------- Outputs ------- dV (1,:) Delta-V expended over the course of the mission (km/s) -------------------------------------------------------------------------- Reference: Leitmann, George. "Minimum Transfer Time for a Power-Limited Rocket." Journal of Applied Mechanics 28, no. 2 (June 1, 1961): 171-78. https://doi.org/10.1115/1.3641648. -------------------------------------------------------------------------- See also: SLPLTrajectory --------------------------------------------------------------------------
Common: CommonData/SwooshWatermark Common: General/CellToMat Common: General/MatToCell Common: General/Watermark Common: Graphics/NewFig Common: Graphics/Plot2D Common: Graphics/PltStyle Common: Graphics/TimeLabl
Back to the Orbit Module page