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Aneutronic Fusion

e Fusion reactions that produce few neutrons
- D +3He — 4He (3.6 MeV) + p (14.7 MeV)
x Plus significant side reactions
oD+D— 2T (1.01 MeV) + H (3.02 MeV)
oD+ D — 23He (0.82 MeV) + n (2.45 MeV)

- p+ "B —=34He + 8.6 MeV
e Fusion products can be exhausted directly through a

magnetic nozzle to produce thrust

- Jet exhaust is somewhat more complicated with spherical or
toroidal geometries

e These reactions require much higher plasma
temperatures than D-T
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Fuel Sources

e Boron-proton

- Boron is readily available

e Deuterium-Helium 3

- 3He is very rare
- Volcanoes

- Bombardment of lithium produces tritium which decays

- Lunar mining
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The Fusion Energy Balance

e p+1B reaction in this case
e Bremsstrahlung due to

electron braking — worse i —
at high temperatures Spiit ]| | R oPower L] Radiator
e Synchrotron is RF — worse l
at high temperatures and lonization
1 Synchrotron

high magnetic fields

e Can recycle some of the
losses via a heat engine

e Ideal D-He3 reaction
- Cold electrons
- Hot 3He
- D in the middle

Radiation

Bremsstrahlung

3 *He + 8.6 MeV
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Fusion Engine Concepts

e Many engine concepts have been investigated
- Levitated dipole
- Spherical tokamak with poloidal divertor
- Gas dynamic mirror
- Magnetic target fusion with plasma beams
- Pulsed high density fusion rocket
- Spherical tokamak with ripple effects for thrust extraction
- Colliding beam FRC
- RF heated FRC (our concept)
- Many others

e Many of these are candidates for terrestrial power
generation
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Fusion Engine 1/4

Key Elements: FRC, RF heating and magnetic nozzle

Makes a small, 5 — 10 MW fusion reactor feasible
Cigar shaped reactor — elongation improves stability and produces more power

Fuel

D-3He maintain pressure by having a ratio of 1 D to 2 3He while reducing D-D side reactions
Field Reversed Configuration

Elongated plasma ellipsoid in which an azimuthal current reverses the field
Ratio of magnetic pressure to plasma pressure nearly 1 — only levitated dipole is better
Can use passive flux conservers — strips of high temperature superconducting film eliminates the need for active superconductors for confinement

Radio Frequency Heating
0dd parity rotating magnetic field — heats electrons
Electrons transfer power to ions
Get explosive heating of ions

Physics of RF interaction with dense plasmas not well understood

11/7/14




Fusion Engine 2/4
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Fusion Engine 3/4
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Fusion Engine 4/4
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Parameter Value
Fuel 1.0 D3He
First Wall Thermal Power (MW/ m2) 0.3
Aspect Ratio (L/R) 15.00
Plasma Radius (m) 0.36
Plasma Volume (m3) 2.18

RMS Plasma Pressure (Pa) 5.2e+06
Central Plasma Pressure (Pa) 1.0e+07
Average Magnetic Field at Coil (T) 3.6
Shield EM Attenuation 1.00e-07
Magnet Mass (kg) 7.29e+01
Shield Mass (kg) 4.19e+03
Power Conversion Mass (kg) 8.21e+03
Radiator Mass (kg) 2.04e+03
Total Mass (kg) 1.45e+04
Specific Mass (kW /kg) 0.69
Central Temperature (keV) 100
Deuterium Density (1020 m3) 1.3
Helium-3 Density (102°/m3) 1.3
Electron Density ( 1020/m3) 3.9
Synchrotron (MW/m3) 0.10
Bremsstrahlung (MW/m3) 1.89
Confined Gyro Radii 46.4
Fusion Power (MW) 14.3

Net Power (MW) 10.0
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Ongoing Research at PPPL

e Magnetic nozzle experiment (MNX) 4

- Studying recombination and phase

transition ‘, ’.'n W, | ...a |

* FRC e :

- Investigating non-ideal MHD effects g r———

Hll\ll u’o

- FRC stability properties

- Complete understanding of FRC stability
is lacking

- RF heating for dense plasmas
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Mission Design 1/3

13

Orbiting crewed assembly station Mission
in polar orbit 5
Starship assembled and tested af
16 launches of Falcon 9 Heavy
Fewer with NASA HLV
Departure using a liquid booster
stage 1t

14 N constant thrust 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 350 400 450 500

Position (1Y)

Not necessarily optimal thrust
Exhaust Y2 maximum from D-3He <107

Not necessarily the optimal exhaust
velocity

Assumes 10 kW/kg
Our work shows 670 W/kg!

Arrives at Alpha-Centauri in 500
years 0

Goes into 1 AU orbit around A or B

Then goes into polar orbit around
planet
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Mission Design 2/3

Alpha-Centauri Orbital Plane
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Mission Design 3/3
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Starship Conceptual Design 1/2

e Nine 10 MW engines
e 16 m antenna

e 0.5 m aperture
telescope for
navigation and
science

e Communications 1
kpbs
e Pointing control

differential thrust
and CMGs
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Starship Conceptual Design 2/2
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Shows Falcon 9 Heavy shroud and Hubble Space telescope
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Lifetime

e 500 years to reach Alpha-Centauri

e Neutron bombardment the major limitation to
engine life
- Boron proton 1000 times lower neutron flux than deuterium
helium-3
- Reduce neutron flux by choice of temperature and using less D
in the reactor
e Longest lived satellites are Voyager 1 and 2 — 34
years

e Comsats routinely reach 15 years — fuel is the major
life limiting factor
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Summary and Conclusions

e Fusion propulsion enables interstellar missions

e A mission to Alpha-Centauri is feasible assuming that a
fusion engine can be built
e Improvement of specific power critical
- Magnetized target fusion claims 400 kW/kg!
e Neutron damage a major issue for the engines
- Boron proton reaction would reduce this drastically
e Significant science and engineering required
- Liquid rockets were demonstrated by Goddard in 1923
- Fusion breakeven has not yet been demonstrated
e Modular Fusion Engine permits Robert Goddard like
program because of its size
- Build a test model then build another — huge budgets not required

19 11/7/14




Future Work

e Continue development of the RF heated FRC

- Successtul reactor would also help solve terrestrial energy

problems

e Development of engine optimization tools
- Find the optimal densities and temperatures

- Heat engine optimization

- 3D plasma models

e Trajectory optimization
- Variable thrust and exhaust velocity

- Star system arrival guidance
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