Demonstrate eigenvector assignment using an STOVL Model for transition.

The example is taken from:

Lee, H. P., Jr., Yousseff, H.M. and R.P. Habek, "Application of Eigenstructure Assignment to the Design of STOVL Flight Control Systems," AIAA 88-4140-CP.

------------------------------------------------------------------------
See also STOVL, ESAssign, IC
------------------------------------------------------------------------

Contents

%--------------------------------------------------------------------------
%   Copyright (c) 2003 Princeton Satellite Systems, Inc.
%   All rights reserved.
%--------------------------------------------------------------------------

System

%-------
g = STOVL('lateral/directional transition');

disp(' ')
disp('---------------------')
disp('Open loop eigenvalues')
disp('---------------------')

eig(g)
 
---------------------
Open loop eigenvalues
---------------------
ans =
         -0.5 +          0i
     0.068541 +     1.5783i
     0.068541 -     1.5783i
     -0.89017 +          0i
    -0.059012 +          0i
          -50 +          0i
          -50 +          0i

Desired eigenvalues

%--------------------
j      = sqrt(-1);
lambda = [ -1.4 + j*1.43;...
           -1.4 - j*1.43;...
		   -2.1 + j*2.14;...
		   -2.1 - j*2.14];

vD     = [0   0   1   nan;...
          1   nan 0   0;...
          nan 1   0   0;...
          0   0   nan 1;...
          nan*ones(3,4)];
disp(vD);

fC     = [1 1 0 0;0 0 1 1];
     0     0     1   NaN
     1   NaN     0     0
   NaN     1     0     0
     0     0   NaN     1
   NaN   NaN   NaN   NaN
   NaN   NaN   NaN   NaN
   NaN   NaN   NaN   NaN

Compute the gain and the achieved eigenvectors

%-----------------------------------------------
disp(' ')
disp('----')
disp('Gain')
disp('----')
k = ESAssign( g, lambda, vD, fC);
disp(k);
 
----
Gain
----
       1.2904       2.0104            0            0
            0            0       6.1928      -3.5525

Create the closed loop system

%------------------------------
[a, b, c] = getabcd( g );
aCL       = a - b*k*c;

disp(' ')
disp('-----------------------')
disp('Closed loop eigenvalues')
disp('-----------------------')
eig(aCL)
 
-----------------------
Closed loop eigenvalues
-----------------------
ans =
      -47.974 +          0i
      -42.818 +          0i
      -5.3652 +          0i
      -2.3756 +          0i
      -1.1369 +     1.5463i
      -1.1369 -     1.5463i
     -0.50548 +          0i

Digitize the closed loop system using a zero order hold

%--------------------------------------------------------

% Simulate
%---------
x = [0;0;0;0;0;pi/180;0];
IC( g, x, 0.01, 1000 );
g = set( g, aCL, 'a' );

x = [0;0;0;0;0;pi/180;0];
IC( g, x, 0.01, 1000 );

%--------------------------------------