Contents

Simulate a departure from the Earth

Treat the problem as planar. Has a rendezvous.

%--------------------------------------------------------------------------
% See also: Date2JD. TwoDEscape, LambertTOF, RV2El, RVOrbGen
%--------------------------------------------------------------------------

%--------------------------------------------------------------------------
%   Copyright (c) 2017 Princeton Satellite Systems, Inc.
%   All rights reserved.
%--------------------------------------------------------------------------
%   Since 2019.1
%--------------------------------------------------------------------------

rE        = Constant('equatorial radius earth');
mu        = Constant('mu earth');
r         = rE + 386;
uE        = 120e3; % exhaust velocity [m/s]
m0        = 3500;  % initial mass
mF        = 4000;  % fuel mass
jD0       = Date2JD([2024 5 5 0 0 0]);
thrust    = 20;    % N
[mP,x,t]  = TwoDEscape( mu, r, uE, thrust, m0, mF, [1000 6000]+rE );
Spiral time:               28.88 days
Fuel consumed:            415.90 kg
Final radius:          330365.96 km
Delta-V:                    6.85 km/s
Exhaust velocity:         120.00 km/s
Time in radiation belt: 1.03 week

Use a search to find the Lambert solution that results in the final velocity vector tangent to the target

The solution should be about 20 hours.

xT        = x(:,39000); % From looking at the plot
r0        = -r*Unit(xT(1:3));
vMag      = sqrt(mu/Mag(r));
v         = vMag*Cross([0;0;1],Unit(r0));

tic
hours     = 17;
fun     = @(hours) RHS( hours, xT, r0 );
options = optimset;
hours   = fminsearch( fun, hours, options );
toc

fprintf('Hours to intercept %12.4f\n',hours);

Cost

function y = RHS( hours, xT, r0 )

dT  = hours*3600;
vT	= LambertTOF( r0, xT(1:3), dT, 1 );
y   = abs(1 - Unit(xT(4:6))'*Unit(vT(:,2)));

if( hours < 0 )
  y = 10;
end

end


%--------------------------------------

% $Id: 3bf273bba15d541da07f44527ef05c728903f355 $
Elapsed time is 0.119836 seconds.
Hours to intercept      20.0203