Demonstrate a detection filter for a spinning spacecraft.

This filter will detect measurement failures and actuator failures This function uses an analytical derivation of a detection filter which is feasible for this simple system. For linear time invariant systems the detection filter gain matrix is a constant.

Since version 9.
-------------------------------------------------------------------------
See also C2DZOH, Plot2D
-------------------------------------------------------------------------

Contents

%--------------------------------------------------------------------------
%   Copyright (c) 2006-2008 Princeton Satellite Systems, Inc.
%   All rights reserved.
%--------------------------------------------------------------------------

Filter and plant parameters

%----------------------------
c      = 0.1; k = 0.1;
a      = [-0.9*c k;-k -c]; b = eye(2);
aE     = [-c k;-k -c];
lam    = -1;
d      = [-c-lam -k;k -c-lam];

Set up the simulation

%----------------------
nSim   = 1000; dT    = 0.01;
xPlot  = zeros(6,nSim);
x      = [0.5;-0.5]; xE = x;

Discretize the plant and filter

%--------------------------------
[aE,d] = C2DZOH(aE,d,dT);
[a,b]  = C2DZOH(a,b,dT);

for k = 1:nSim
  r          = x - xE;
  xPlot(:,k) = [x;xE;r];
  x          = a*x;
  xE         = aE*xE + d*(x - xE);
end

Plot2D( (0:(nSim-1))*dT, xPlot, 'Time (sec)', {'\omega_x' '\omega_y' 'r'},...
        'Spin DF','lin',{'[1 3]';'[2 4]';'[5 6]'} );


%--------------------------------------
% PSS internal file version information
%--------------------------------------

% $Id: caee61473c7d146928bf3ef6a75cb776ab3c495b $