Path: ACPro/ACPointMass
% Simulate the controlled trajectory of a point mass aircraft model.
This simulation includes feedback control. The control law is based on
feedback linearization, so that the closed loop system approximates a
linear system with desirable dynamic properties.
State: x = [V;gama;psi;x;y;h;Tbar]
--------------------------------------
V true airspeed
gama air relative flight path angle
psi air relative flight heading angle
x East position
y North position
h altitude
Tbar normalized excess thrust
Control: u = [Lbar;phi;Tcbar]
-------------------------------
Lbar normalized excess lift
phi bank angle
Tcbar normalized excess thrust command
Command: cmd = [h;v;psi;x;y]
-------------------------------
h altitude command (m)
v velocity command (true airspeed, m/s)
psi heading command (rad)
x eastward position (m)
y northward position (m)
--------------------------------------------------------------------------
Form:
[x,u,xDot,cmd] = AircraftPointMassCLPSim( x0, cmd, t, data );
--------------------------------------------------------------------------
------
Inputs
------
x0 (7,1) Initial state vector
cmd (3,N) Command vector (only h,v,psi need to be provided)
t (1,N) Time vector for integration
data Data structure with fields:
a Body-frame disturbance accel. (forward,x-track,normal)
W Wind speeds (East,North,up)
g Gravitatioanl acceleration
tau Engine thrust response time
-------
Outputs
-------
x (7,N) State vector
u (3,N) Control input vector
xDot (7,N) Time derivative of state vector
cmd (5,N) Command vector (all command variables are output)
--------------------------------------------------------------------------
ACPro: ACPointMass/AircraftPointMassControl ACPro: ACPointMass/AircraftPointMassRHS Math: Integration/RK4
Back to the ACPro Module page