Path: Common/Estimation
% Extended Kalman Filter measurement update step. All inputs are after the predict state (see EKFPredict). The h data field may contain either a function name for computing the estimated measurements or an m by n matrix. If h is a function name you must include hX which is a function to compute the m by n matrix is a linearized version of the function h. -------------------------------------------------------------------------- Form: d = EKFUpdate( d ) -------------------------------------------------------------------------- ------ Inputs ------ d (1,1) EKF data structure .m (n,1) Mean .p (n,n) Covariance .h (m,n) Either matrix or name of function .hX (1,:) Name of Jacobian for h .y (m,1) Measurement vector .r (m,m) Measurement covariance vector .hData (1,1) Datastructure for the h and hX functions ------- Outputs ------- d (1,1) EKF data structure .m (n,1) Mean .p (n,n) Covariance .v (m,1) Residuals --------------------------------------------------------------------------
Back to the Common Module page