Path: Common/Control
% Use eigenvector assignment to design a controller. Complex lambdas must be in pairs. Their corresponding eigenvectors must also be complex. The design matrix, d. One column per state. Each row relates vD to the plant matrix. For example, rows 7 and 8 relate column 3 in vD to the plant. In this case vD(1,3) relates to state 2 and vD(2,4) relates to state 3. vD need not have as many columns as states. If the desired vD are eigenvectors then d is the identity matrix If the desired vectors are directions in the output then D = c If components of v are no concern the corresponding column of D should be zero. rD gives the rows in D per eigenvalue Each column is for one eigenvalue i.e. column one means that the first three rows of D relat to eigenvalue 1 -------------------------------------------------------------------------- Form: [k, v] = EVAssgnC( g, lambda, vD, d, rD, w ) -------------------------------------------------------------------------- ------ Inputs ------ g (:) State space system of type statespace lambda (n) Desired eigenvalues vD (:,n) Desired eigenvectors d (:,n) Design matrix rD (n) Rows in d per eigenvalue w (:,n) Weighting vectors ------- Outputs ------- k Gain matrix v Achieved eigenvectors -------------------------------------------------------------------------- Reference: Stevens, B.L., Lewis, F.L. Aircraft Control and Simulation John Wiley & Sons, 1992, pp. 342-358. Andry, A. N., Jr., Shapiro, E.Y. and J.C. Chung, "Eigenstructure Assignment for Linear Systems," IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-19, No. 5. September 1983. --------------------------------------------------------------------------
Math: Solvers/LSSVD
Back to the Common Module page