Path: Common/Estimation
% Linear Kalman Filter prediction step. This assumes a discrete model of the form: x[k] = a[k-1]x[k-1] + b[k-1]u[k-1] + q y[k] = h[k]x[k] + r b and u are optional. If only one argument is entered it assumes it is a datastructure of the form d = struct('m',m,'p',','a',a,'q',q,'b',b,'u',u) or d = struct('m',m,'p',','a',a,'q',q,'bU',b*u) -------------------------------------------------------------------------- Form: [m, p] = KFPredict( d ) [m, p] = KFPredict( m, p, a, q, b*u ) [m, p] = KFPredict( m, p, a, q, b, u ); -------------------------------------------------------------------------- ------ Inputs ------ m (n,1) Mean p (n,n) Covariance matrix a (n,n) State transition matrix q (n,n) Model noise matrix b (n,p) Deterministic input matrix u (p,1) Deterministic input vector ------- Outputs ------- m (n,1) Mean p (n,n) Covariance matrix --------------------------------------------------------------------------
Back to the Common Module page