Path: Common/Control
% Determine the steady state control for a state space system. . x = Ax + Bu y = Cx + Du given y. If the number of inputs is less than the number of outputs it computes a weighted least squares fit to y using the weighting matrix q. If the number of inputs is greater than the number of outputs it minimizes the function u'ru. If q is not input it uses the identity matrix. -------------------------------------------------------------------------- Form: [u, x, yC] = SteadyS( a, b, c, d, y, q, r ) -------------------------------------------------------------------------- ------ Inputs ------ a Plant matrix b Input matrix c Output matrix d Feedthrough matrix y Desired output q Weighting matrix for y r Weighting matrix for u ------- Outputs ------- u Steady state control x Steady state state yC Achievable y if number of outputs > number of controls -------------------------------------------------------------------------- Reference: Bryson, A.E., Jr. (1994). Control of Spacecraft and Aircraft Princeton University Press, Princeton, NJ. --------------------------------------------------------------------------
Back to the Common Module page