Path: Common/Estimation
% Unscented Kalman Filter state prediction step. This uses RK4 to propagate the state. Use d = UKFWeight( d ) to get the weight matrices. The function f is of the form f(x,t,d) where d is a data structure contained in fData. -------------------------------------------------------------------------- Form: d = UKFPredict( d ) -------------------------------------------------------------------------- ------ Inputs ------ d (1,1) UKF data structure .m (n,1) Mean .p (n,n) Covariance .q (n,n) State noise .wM (1,2n+1) Model weights .w (2n+1,2n+1) Weight matrix .f (1,:) Pointer for the right hand side function .fData (1,1) Data structure with data for f .dT (1,1) Time step .t (1,1) Time ------- Outputs ------- d (1,1) UKF data structure .m (:,1) Mean .p (:,:) Covariance --------------------------------------------------------------------------
Math: Integration/RK4 Math: Linear/DupVect
Back to the Common Module page