Path: Common/Estimation
% Rauch-Tung-Striebel smoothing for an Unscented Kalman Filter. This is for a non-augmented, i.e. additive Gaussian noise form. This assumes a model of the form: x = f(x,q) y = h(x,r) You pass the data structure that was already generated by an Unscented Kalman Filter and the results of the predict and update steps. -------------------------------------------------------------------------- Form: d = UKFRTSS( m, p, d ) -------------------------------------------------------------------------- ------ Inputs ------ m (n,:) Means p (n,n,:) Covariance d (1,1) UKF data structure .m (n,1) Mean .p (n,n) Covariance .q (n,n) State noise .wM (1,2n+1) Model weights .w (2n+1,2n+1) Weight matrix .f (1,:) Name of right hand side .fData (1,1) Data structure with data for f .dT (1,1) Time step .t (1,1) Time ------- Outputs ------- d (1,1) UKF data structure .mS (:,1) Mean smoothed .pS (:,:) Covariance smoothed --------------------------------------------------------------------------
Math: Integration/RK4 Math: Linear/DupVect
Back to the Common Module page