Path: FormationFlying/EccDynamics
% Compute velocities for periodic motion in an eccentric orbit Given an initial Hills state (xH0) at a particular true anomaly (nu0) of an eccentric orbit (e), compute the in-plane velocities (dx and dy) required for periodic motion. Use any of the following methods: 1) symmetric - Motion is symmetric in-track about the origin 2) fuel optimized - Use LP to find minimum of abs(dx) + abs(dy) 3) velocity constraint - Leave dx = dx0, solve for new dy -------------------------------------------------------------------------- Form: [D, dx, dy] = FFEccDMatPeriodic( xH0, nu0, e, method ); -------------------------------------------------------------------------- ------ Inputs ------ xH0 (6,1) Initial state in Hills frame nu0 (1,1) True anomaly (at initial state) [rad] e (1,1) Eccentricity method (1,1) Indicate which method to use 1 - symmetric 2 - fuel optimization 3 - velocity constraint ------- Outputs ------- D (6,1) Vector of integration constants dx (1,1) Scaled radial velocity required for periodic motion dy (1, ) Scaled along-track velocity required for periodic motion -------------------------------------------------------------------------- References: Inalhan, Tillerson, How, "Relative Dynamics and Control of Spacecraft Formations in Eccentric Orbits", Journal of Guidance, Control & Dynamics, Vol.25, No.1, Jan-Feb 2002. --------------------------------------------------------------------------
FormationFlying: EccDynamics/FFEccDH FormationFlying: EccDynamics/FFEccRMat Common: CommonData/SwooshWatermark Common: General/CellToMat Common: General/MatToCell Common: General/Watermark Common: Graphics/NewFig Common: Graphics/Plot2D Common: Graphics/PltStyle
Back to the FormationFlying Module page