Path: FormationFlying/EccDynamics
% Compute velocities for periodic motion in an eccentric orbit
 Given an initial Hills state (xH0) at a particular true anomaly (nu0) of an
 eccentric orbit (e), compute the in-plane velocities (dx and dy) required for
 periodic motion.
 Use any of the following methods:
     1) symmetric              - Motion is symmetric in-track about the origin
     2) fuel optimized         - Use LP to find minimum of abs(dx) + abs(dy)
     3) velocity constraint    - Leave dx = dx0, solve for new dy
--------------------------------------------------------------------------
   Form:
   [D, dx, dy] = FFEccDMatPeriodic( xH0, nu0, e, method );
--------------------------------------------------------------------------
   ------
   Inputs
   ------
   xH0             (6,1)   Initial state in Hills frame
   nu0           	(1,1)   True anomaly (at initial state) [rad]
   e             	(1,1)   Eccentricity
   method        	(1,1)   Indicate which method to use
                             1 - symmetric 
                             2 - fuel optimization
                             3 - velocity constraint
   -------
   Outputs
   -------
   D               (6,1)  Vector of integration constants
   dx             	(1,1)   Scaled radial velocity required for periodic motion
   dy             	(1, )   Scaled along-track velocity required for periodic motion
--------------------------------------------------------------------------
   References: Inalhan, Tillerson, How, "Relative Dynamics and Control of
   Spacecraft Formations in Eccentric Orbits", Journal of Guidance,
   Control & Dynamics, Vol.25, No.1, Jan-Feb 2002.
--------------------------------------------------------------------------
FormationFlying: EccDynamics/FFEccDH FormationFlying: EccDynamics/FFEccRMat Common: CommonData/SwooshWatermark Common: General/CellToMat Common: General/MatToCell Common: General/Watermark Common: Graphics/NewFig Common: Graphics/Plot2D Common: Graphics/PltStyle
Back to the FormationFlying Module page