Path: FormationFlying/Control
% Compute a constant gain feedback controller for relative orbital motion. Takes the orbital elements "el", constructs a linearized plant for the relative motion, and finds a constant gain feedback controller such that the linear, closed-loop system is asymptotically stable. Use "k" to compute the control acceleration "acc" as follows: acc = k*(xD - xM) where "xM" is the measured relative state, and "xD" is the desired relative state. Each state is a 6x1 vector of the form: [x; y; z; Vx; Vy; Vz] -------------------------------------------------------------------------- Form: k = Lyapunov( el ); % where "el" is element vector: [a,i,W,w,e,M] -or- k = Lyapunov( a ); % where "a" is semi-major axis. assumes e = 0 -------------------------------------------------------------------------- ------ Inputs ------ el (1,6) Reference orbital elements [a,i,W,w,e,M] ------- Outputs ------- k (3,6) Constant gain feedback controller -------------------------------------------------------------------------- References: This is based on Terry Alfriend's paper, AIAA 2000-4131. --------------------------------------------------------------------------
SC: BasicOrbit/E2Nu SC: BasicOrbit/M2E SC: BasicOrbit/M2EApp SC: BasicOrbit/M2EEl SC: BasicOrbit/M2EHy SC: BasicOrbit/M2Nu SC: BasicOrbit/M2NuPb SC: BasicOrbit/OrbRate Common: CommonData/SwooshWatermark Common: General/CellToMat Common: General/MatToCell Common: General/Watermark Common: Graphics/NewFig Common: Graphics/Plot2D Common: Graphics/PltStyle Math: Linear/DupVect
Back to the FormationFlying Module page