Path: FormationFlying/Control
% Compute a constant gain feedback controller for relative orbital motion.
Takes the orbital elements "el", constructs a linearized plant for the
relative motion, and finds a constant gain feedback controller such that
the linear, closed-loop system is asymptotically stable.
Use "k" to compute the control acceleration "acc" as follows:
acc = k*(xD - xM)
where "xM" is the measured relative state, and "xD" is the desired
relative state. Each state is a 6x1
vector of the form: [x; y; z; Vx; Vy; Vz]
--------------------------------------------------------------------------
Form:
k = Lyapunov( el ); % where "el" is element vector: [a,i,W,w,e,M]
-or-
k = Lyapunov( a ); % where "a" is semi-major axis. assumes e = 0
--------------------------------------------------------------------------
------
Inputs
------
el (1,6) Reference orbital elements [a,i,W,w,e,M]
-------
Outputs
-------
k (3,6) Constant gain feedback controller
--------------------------------------------------------------------------
References: This is based on Terry Alfriend's paper, AIAA 2000-4131.
--------------------------------------------------------------------------
SC: BasicOrbit/E2Nu SC: BasicOrbit/M2E SC: BasicOrbit/M2EApp SC: BasicOrbit/M2EEl SC: BasicOrbit/M2EHy SC: BasicOrbit/M2Nu SC: BasicOrbit/M2NuPb SC: BasicOrbit/OrbRate Common: CommonData/SwooshWatermark Common: General/CellToMat Common: General/MatToCell Common: General/Watermark Common: Graphics/NewFig Common: Graphics/Plot2D Common: Graphics/PltStyle Math: Linear/DupVect
Back to the FormationFlying Module page