## BHinge:

```% Compute a transformation matrix from a bHinge data structure.
There are four possiblities:

1) You can just input a transformation matrix by entering only the b field.
2) You can input a quaternion by just entering the q field. This supercedes
a b field.
3) You can input an angle and axis of rotation (1=x,2=y,3=z).
If no axis is specified, the rotation will be about the positive z-axis.
This supercedes a quaternion.
4) If you enter the angle field and the b field, the output transformation
matrix will be the total rotation first through the angle about
the specified axis followed by rotation through the initial b matrix.
If no axis is specified, the rotation will be about the positive z-axis.

They are executed in
--------------------------------------------------------------------------
Form:
b = BHinge( bHinge )
--------------------------------------------------------------------------

------
Inputs
------

bHinge  (.)
.b     (3,3) Transformation matrix
.q     (4,1) Quaternion
.angle (1,1) Angle of rotation (radians)
.axis  (1,1) Axis of rotation 1=x, 2=y, 3=z (default)
Positive integer means transform from
unrotated to rotated, negative means reverse
or
(3,1) Axis of rotation - see AUToQ

-------
Outputs
-------
b            (3,3)  Rotation matrix

--------------------------------------------------------------------------
```

## Children:

```Common: General/IsValidField
Common: Quaternion/AU2Q
Common: Quaternion/Q2Mat
```

Back to the AerospaceUtils Module page