Path: Orbit/OrbitMechanics
% Compute the gravitational acceleration in spherical coordinates.
Acceleration vectors are a [ a(r), a(lambda), a(theta) ].
The coefficients should be unnormalized. If they are not the function will
throw a warning and unnormalize them.
[s, c, j, mu, a] = LoadGEM( 1 )
for k = 1:kMax
[a, aS, aZ, aT] = AGravity( nZ, nT, r, lambda, theta, s, c, j, mu, a );
end
than
for k = 1:kMax
[a, aS, aZ, aT] = AGravity( nZ, nT, r, lambda, theta );
end
--------------------------------------------------------------------------
Form:
[aG, aS, aZ, aT] = AGravity( nZ, nT, r, lambda, theta, d )
[aG, aS, aZ, aT] = AGravity( nZ, nT, r, lambda, theta, s, c, j, mu, a )
--------------------------------------------------------------------------
------
Inputs
------
nZ Highest zonal harmonic (m = 0) (empty gives the max #)
nT Highest sectorial and tesseral harmonic (empty gives the max #)
r Radius
lambda Equatorial angle
theta Angle from pole
d (.) Gravity model struct
-or-
s (:,:) S terms
c (:,:) C terms
j (:) m = 0 terms
mu Spherical gravitational potential
a Earth radius
-------
Outputs
-------
aG (3,1) Total gravitational acceleration km/sec^2
aS (3,1) Spherical term km/sec^2
aZ (3,1) Zonal term km/sec^2
aT (3,1) Tesseral term km/sec^2
--------------------------------------------------------------------------
See also AGravityC, PDAL, SCHarm
--------------------------------------------------------------------------
Orbit: GravityModels/LoadGEM Orbit: GravityModels/UnnormalizeGravity Math: Analysis/PDAL Math: Analysis/SCHarm
Back to the Orbit Module page