Lissajous:

Path: Orbit/LowEnergyManeuver

```% Compute the lissajous trajectory about a collinear libration point

Type Lissajous for a demo.

-------------------------------------------------------------------------------
Form:
[x1,x2,x3,Ay,t] = Lissajous( system, point, Ax, Az, phiXY, phiZ, N )
-------------------------------------------------------------------------------

------
Inputs
------
system	(1,:)	Name of two-body system, options:
- 'SEM'  Sun - Earth/moon
- 'EM'   Earth - moon
point   (1,1)  Libration point number (1 or 2)
Ax      (1,1)  x amplitude
Az      (1,1)  z amplitude
phiXY   (1,1)  Initial phase offset in x-y plane
(measured positive from -x to +y axis)
phiZ    (1,1)  Initial phase offset in z-axis
N       (1,1)  Number of periods to compute trajectory over
(entering 0 returns initial conditions)

-------
Outputs
-------
x1      (6,1) Trajectory computed from continuous solution [x;y;z;dx;dy;dz]
x = -Ax*cos( wXY*t + phiXY )
y = (Ax/k)*sin( wXY*t + phiXY )
z = Az*sin( wXY*t + phiZ )
x2      (6,1) Trajectory integrated using RK4
x3      (6,1) Trajectory integrated using ode45
Ay      (1,1) y amplitude (equal to Ax/k, where k is from LibrationData)
t       (1,:) Time vector

-------------------------------------------------------------------------------
```

Children:

```Orbit: LowEnergyManeuver/LibrationCoeff
Orbit: LowEnergyManeuver/LibrationData
Orbit: LowEnergyManeuver/LibrationRHS
Orbit: LowEnergyManeuver/LibrationRHSODE45
Common: General/IsVersionAfter
Common: Graphics/NewFig
Math: Integration/RK4
Math: Linear/Mag
```

Back to the Orbit Module page