Lissajous:

Path: Orbit/LowEnergyManeuver

% Compute the lissajous trajectory about a collinear libration point 

 Type Lissajous for a demo.

-------------------------------------------------------------------------------
   Form:
   [x1,x2,x3,Ay,t] = Lissajous( system, point, Ax, Az, phiXY, phiZ, N )
-------------------------------------------------------------------------------

   ------
   Inputs
   ------
   system	(1,:)	Name of two-body system, options:
                  - 'SEM'  Sun - Earth/moon
                  - 'EM'   Earth - moon
   point   (1,1)  Libration point number (1 or 2)
   Ax      (1,1)  x amplitude
   Az      (1,1)  z amplitude
   phiXY   (1,1)  Initial phase offset in x-y plane
                  (measured positive from -x to +y axis)
   phiZ    (1,1)  Initial phase offset in z-axis
   N       (1,1)  Number of periods to compute trajectory over
                       (entering 0 returns initial conditions)

   -------
   Outputs
   -------
   x1      (6,1) Trajectory computed from continuous solution [x;y;z;dx;dy;dz]
                 x = -Ax*cos( wXY*t + phiXY )
                 y = (Ax/k)*sin( wXY*t + phiXY )
                 z = Az*sin( wXY*t + phiZ )
   x2      (6,1) Trajectory integrated using RK4
   x3      (6,1) Trajectory integrated using ode45
   Ay      (1,1) y amplitude (equal to Ax/k, where k is from LibrationData)
   t       (1,:) Time vector

-------------------------------------------------------------------------------

Children:

Orbit: LowEnergyManeuver/LibrationCoeff
Orbit: LowEnergyManeuver/LibrationData
Orbit: LowEnergyManeuver/LibrationRHS
Orbit: LowEnergyManeuver/LibrationRHSODE45
Common: General/IsVersionAfter
Common: Graphics/NewFig
Math: Integration/RK4
Math: Linear/Mag

Back to the Orbit Module page