Path: Orbit/LowEnergyManeuver
% Compute the lissajous trajectory about a collinear libration point Type Lissajous for a demo. ------------------------------------------------------------------------------- Form: [x1,x2,x3,Ay,t] = Lissajous( system, point, Ax, Az, phiXY, phiZ, N ) ------------------------------------------------------------------------------- ------ Inputs ------ system (1,:) Name of two-body system, options: - 'SEM' Sun - Earth/moon - 'EM' Earth - moon point (1,1) Libration point number (1 or 2) Ax (1,1) x amplitude Az (1,1) z amplitude phiXY (1,1) Initial phase offset in x-y plane (measured positive from -x to +y axis) phiZ (1,1) Initial phase offset in z-axis N (1,1) Number of periods to compute trajectory over (entering 0 returns initial conditions) ------- Outputs ------- x1 (6,1) Trajectory computed from continuous solution [x;y;z;dx;dy;dz] x = -Ax*cos( wXY*t + phiXY ) y = (Ax/k)*sin( wXY*t + phiXY ) z = Az*sin( wXY*t + phiZ ) x2 (6,1) Trajectory integrated using RK4 x3 (6,1) Trajectory integrated using ode45 Ay (1,1) y amplitude (equal to Ax/k, where k is from LibrationData) t (1,:) Time vector -------------------------------------------------------------------------------
Orbit: LowEnergyManeuver/LibrationCoeff Orbit: LowEnergyManeuver/LibrationData Orbit: LowEnergyManeuver/LibrationRHS Orbit: LowEnergyManeuver/LibrationRHSODE45 Common: General/IsVersionAfter Common: Graphics/NewFig Math: Integration/RK4 Math: Linear/Mag
Back to the Orbit Module page