Path: Orbit/OrbitMechanics
% Compute the earth's gravitational potential.
r must be a scalar but theta and phi may be arrays. If you want to call this
routine multiple times it is faster to do
[s, c, j, mu, a] = LoadGEM( 1 )
for k = 1:kMax
[u, uS, uZ, uT] = UGravity( nZ, nT, r, lambda, theta, s, c, j, mu, a );
end
than
for k = 1:kMax
[u, uS, uZ, uT] = UGravity( nZ, nT, r, lambda, theta );
end
--------------------------------------------------------------------------
Form:
[u, uS, uZ, uT] = UGravity( nZ, nT, r, lambda, theta, s, c, j, mu, a )
--------------------------------------------------------------------------
------
Inputs
------
nZ Highest zonal harmonic (m = 0)
nT Highest sectorial and tesseral harmonic
r Radius
lambda (j) Equatorial angle
theta (i) Angle from pole
s (36,36) S terms
c (36,36) C terms
j (36) m = 0 terms
mu Spherical gravitational potential
a Earth radius
-------
Outputs
-------
u (i,j) Total gravitational potential
uS Spherical term
uZ (i) Zonal terms
uT (i,j) Tesseral and sectorial terms
--------------------------------------------------------------------------
Reference: Seidelmann, P.K, (ed) (1992). Explanatory Supplement to the
Astronomical Almanac. University Science Books, Mill Valley, CA.
p. 226.
--------------------------------------------------------------------------
Orbit: GravityModels/LoadGEM Common: Graphics/Mesh2 Math: Analysis/PAL Math: Analysis/SCHarm
Back to the Orbit Module page