Path: StraightLine/SLPowerLimited
% Compute optimal engine and fuel mass ratios for SLPL rendezvous Straight-line rendezvous with constant-power rocket. This corresponds to the optimal power level for the minimum transfer time given the distance and payload ratio and zero initial and final velocities. The optimal profile is linear acceleration. The optimum fuel and power ratio also apply to constant acceleration profile. Note: in the reference the payload ratio is called the "dead mass" ratio, since it is the payload and additional structure beyond the engine and fuel tanks. ------------------------------------------------------------------------------- Form: [muF,muP] = OptimalSLPL( lambda, sigma, f ) [muF,muP,tF,tA] = OptimalSLPL( lambda, sigma, f, dF ) ------------------------------------------------------------------------------- ------ Inputs ------ lambda (1,:) Payload ratio sigma (1,1) Engine specific power (jet), W/kg f (1,1) Fuel tank fraction, optional [0] dF (1,1) Distance traveled (km), optional ------- Outputs ------- muF (1,:) Fuel ratio (mFuel/m0) muP (1,:) Power ratio (mEngine/m0) tF (1,:) Minimum transfer time, linear accel tA (1,:) Minimum transfer time, constant accel ------------------------------------------------------------------------------- Reference: Leitmann, George. "Minimum Transfer Time for a Power-Limited Rocket." Journal of Applied Mechanics 28, no. 2 (June 1, 1961): 171-78. https://doi.org/10.1115/1.3641648. --------------------------------------------------------------------------
Common: Database/Constant Common: Graphics/Plot2D
Back to the StraightLine Module page