OptimalSLPL:

Path: StraightLine/SLPowerLimited

% Compute optimal engine and fuel mass ratios for SLPL rendezvous
 Straight-line rendezvous with constant-power rocket. This corresponds to
 the optimal power level for the minimum transfer time given the distance
 and payload ratio and zero initial and final velocities. The optimal
 profile is linear acceleration. The optimum fuel and power ratio also
 apply to constant acceleration profile.

 Note: in the reference the payload ratio is called the "dead mass" ratio,
 since it is the payload and additional structure beyond the engine and
 fuel tanks.
-------------------------------------------------------------------------------
   Form:
   [muF,muP]       = OptimalSLPL( lambda, sigma, f )
   [muF,muP,tF,tA] = OptimalSLPL( lambda, sigma, f, dF )
-------------------------------------------------------------------------------

   ------
   Inputs
   ------
   lambda        (1,:)  Payload ratio
   sigma         (1,1)  Engine specific power (jet), W/kg
   f             (1,1)  Fuel tank fraction, optional [0]
   dF            (1,1)  Distance traveled (km), optional

   -------
   Outputs
   -------
   muF           (1,:)  Fuel ratio (mFuel/m0)
   muP           (1,:)  Power ratio (mEngine/m0)
   tF            (1,:)  Minimum transfer time, linear accel
   tA            (1,:)  Minimum transfer time, constant accel

-------------------------------------------------------------------------------
   Reference: Leitmann, George. "Minimum Transfer Time for a Power-Limited
              Rocket." Journal of Applied Mechanics 28, no. 2 (June 1,
              1961): 171-78. https://doi.org/10.1115/1.3641648.
--------------------------------------------------------------------------

Children:

Common: Database/Constant
Common: Graphics/Plot2D

Back to the StraightLine Module page