Path: StraightLine/SLPowerLimited
% Compute optimal engine and fuel mass ratios for SLPL rendezvous
Straight-line rendezvous with constant-power rocket. This corresponds to
the optimal power level for the minimum transfer time given the distance
and payload ratio and zero initial and final velocities. The optimal
profile is linear acceleration. The optimum fuel and power ratio also
apply to constant acceleration profile.
Note: in the reference the payload ratio is called the "dead mass" ratio,
since it is the payload and additional structure beyond the engine and
fuel tanks.
-------------------------------------------------------------------------------
Form:
[muF,muP] = OptimalSLPL( lambda, sigma, f )
[muF,muP,tF,tA] = OptimalSLPL( lambda, sigma, f, dF )
-------------------------------------------------------------------------------
------
Inputs
------
lambda (1,:) Payload ratio
sigma (1,1) Engine specific power (jet), W/kg
f (1,1) Fuel tank fraction, optional [0]
dF (1,1) Distance traveled (km), optional
-------
Outputs
-------
muF (1,:) Fuel ratio (mFuel/m0)
muP (1,:) Power ratio (mEngine/m0)
tF (1,:) Minimum transfer time, linear accel
tA (1,:) Minimum transfer time, constant accel
-------------------------------------------------------------------------------
Reference: Leitmann, George. "Minimum Transfer Time for a Power-Limited
Rocket." Journal of Applied Mechanics 28, no. 2 (June 1,
1961): 171-78. https://doi.org/10.1115/1.3641648.
--------------------------------------------------------------------------
Common: Database/Constant Common: Graphics/Plot2D
Back to the StraightLine Module page