Path: StraightLine/SLPowerLimited
% Compute delta-V of an ideal power-limited rocket (straight-line)
Power limit is the only constraint; thrust and exhaust velocity can go to
zero or infinity. Uses Leitmann's 1961 result that the optimal
acceleration profile is linear in time. The optimal can be either:
* Constrained fuel and time, maximized distance OR
* Constrained distance and time, minimized fuel OR
* Constrained fuel and distance, minimized time.
The acceleration profile is:
a(t) = A*(tF-tau-t)
a is acceleration, A is a constant, tau is a constant, t is mission time,
tF is the final time.
Type SLPLDeltaV for a demo.
--------------------------------------------------------------------------
Form:
dV = SLPLDeltaV( A, tau, tF )
--------------------------------------------------------------------------
------
Inputs
------
A (1,:) Acceleration scale parameter, (m/s^3). Find this using
another SLPLFind function, such as SLPLFindMass.
tau (1,:) Time between turnaround and tF (s). Find this using
another SLPLFind function, such as SLPLFindMass.
tF (1,:) Final time (s)
-------
Outputs
-------
dV (1,:) Delta-V expended over the course of the mission (km/s)
--------------------------------------------------------------------------
Reference: Leitmann, George. "Minimum Transfer Time for a Power-Limited
Rocket." Journal of Applied Mechanics 28, no. 2 (June 1,
1961): 171-78. https://doi.org/10.1115/1.3641648.
--------------------------------------------------------------------------
See also: SLPLTrajectory
--------------------------------------------------------------------------
Common: Graphics/Plot2D Common: Graphics/TimeLabl
Back to the StraightLine Module page