Path: Thermal/Brayton
% Design an axial turbine Assumes repeating stages. Uses mean line analysis. The reaction, flow coefficient and loading coefficient determine the design. The output data structure has all the values in the input plus values computed in the function. The latex formatted output can be saved to a file using CreateLatexTable or printed in the command window using DisplayLatexTable. Type AxialTurbineDesign for a demo taken from Example 4.2 in the reference on pages 138-139. -------------------------------------------------------------------------- Form: [d, l] = AxialTurbineDesign( varargin ) -------------------------------------------------------------------------- ------ Inputs ------ varargin {.} Parameter pairs 'name' (1,:) Name of the turbine 'reaction' (1,1) Reaction 'power' (1,1) Power (MW) 'r tip' (1,1) Radius of tip (m) 'omega' (1,1) Angular rate (rad/s) 'mass flow' (1,1) Mass flow (kg/s) 'flow coeff' (1,1) Flow coefficient 'loading coeff' (1,1) Loading coefficient 'reheat factor' (1,1) Reheat factor 'material' (1,:) Material or data structure ------- Outputs ------- d (.) Data structure l {:,3} Latex formatted output -------------------------------------------------------------------------- Reference: S.L. Dixon and C.A. Hall, "Fluid Mechanics and Thermodynamics of Turbomachinery, 7th Edition," Butterworth-Heineman, 2014, pp. 138 -------------------------------------------------------------------------- See also: ImpactThickness, BladeStress --------------------------------------------------------------------------
Thermal: Brayton/BladeStress Thermal: Brayton/ImpactThickness Common: Atmosphere/RFromCPAndGamma Common: General/DisplayLatexTable Common: Graphics/NewFig Common: Graphics/XLabelS Common: Graphics/YLabelS Math: Geometry/SurfaceAreaEllipsoid
Back to the Thermal Module page