BraytonWithRecuperator:

Path: Thermal/Brayton

% Brayton Cycle with Recuperator

 d.r is the pressure ratio of the compressor. Higher r means higher thermal
 efficiency but more mass. Typical closed-loop Brayton cycles for space
 applications have r = 2. The default working fluid is a 70/30 (molar ratio)
 mixture of Helium and Xenon.

 The function draws a heat engine diagram with pressures and temperatures
 labeled.

 Type BraytonWithRecuperator for a demo.
--------------------------------------------------------------------------
  Form:
  d = BraytonWithRecuperator;    % default data
  d = BraytonWithRecuperator( d )
--------------------------------------------------------------------------

   -------
   Inputs
   -------
   d (.) Input data structure
         .T4     (1,1) Turbine Inlet temperature (deg-K) 
         .T1     (1,1) Compressor Inlet Temp temperature (deg-K)
         .P1     (1,1) Compressor Inlet Pressure (Atm)
         .pHeat  (1,1) Heat input (kW)
         .r      (1,1) Pressure ratio of compressor
         .name   (1,:) Name of gas or mixture
         .nr    	(1,1) Recuperator effectiveness - how much heat we want to remove
         .nc     (1,1) Compressor efficiency
         .nt   	(1,1) Turbine efficiency
         .nPX   	(1,1) Exchanger pressure drop an empirically-determined factor
         .gamma	(1,1) Specific heat ratio
         .cP    	(1,1) Specific heat (J/kg-K)
         .molWt	(1,1) Molecular Weight of the mixture in (g/mol)
         .image  (1,1) Image for diagram, default BraytonCycle.png

   -------
   Outputs
   -------
   d (.) Data structure additions
         .P2   (1,1) Compressor outlet (Pa)
         .T2   (1,1) Compressor outlet (deg-K)
         .P3   (1,1) Heat exchanger inlet (Pa)
         .T3   (1,1) Heat exchanger inlet (deg-K)
         .P4   (1,1) Turbine inlet (Pa) 
         .P5   (1,1) Recuperator inlet (Pa)
         .T5   (1,1) Recuperator inlet (deg-K)
         .P6   (1,1) Gas cooler inlet (Pa)
         .T6   (1,1) Gas cooler inlet (deg-K)
         .n    (1,1) Brayton cycle efficiency.  
         .mDot	(1,1)	Mass flow (kg/s)
         .wC 	(1,1) Compressor work (kW)
         .wT 	(1,1) Turbine work (kW)
         .wNet (1,1) Net work (kW)

--------------------------------------------------------------------------
   References: Barrett and Reid, "System Mass Variation and Entropy" 
               Generation (2003). MIT Pebble-bed reactor. 
               Wright, Lipinski, Vernon, and Sanchez, "Closed Brayton 
               Cycle Power Conversion Systems" (2006).
               Wilson and Korakianitis, "The Design of High-Efficiency 
               Turbomachinery and Gas Turbines," Second Edition, (2014).
--------------------------------------------------------------------------

Children:

Common: Graphics/NewFig

Back to the Thermal Module page