Spacecraft Control Framework 1.0
Spacecraft Control Library
Classes | Functions
sc_lambert.h File Reference

Lambert method. More...

Go to the source code of this file.

Classes

struct  lambert
 Lambert orbital element starting and ending set. More...
 

Functions

bool Target (double t0, double tTrans, const lambert d, ml_matrix &vTrans, ml_matrix &deltaV)
 Perform targeting between two orbits. More...
 
ml_matrix Lambert (const ml_matrix &r1, const ml_matrix &r2, double dT, int tM, double mu, double &a, double &p, int maxIter=10, double tol=1e-10)
 
double Zeta (double x)
 
double CubicRoot (double h1, double h2)
 

Detailed Description

Lambert method.

Function Documentation

◆ Target()

bool Target ( double  t0,
double  tTrans,
const lambert  d,
ml_matrix &  vTrans,
ml_matrix &  deltaV 
)

Perform targeting between two orbits.

Uses rv_orb_gen to propagate the first orbit to t0 and the second orbit to t0+tTrans. Chooses the long or short was based on angular momentum and computes the Lambert solution. Finally, checks for a hit Earth condition.

Parameters
t0Start time
tTransTransfer time
dLambert structure with two sets of orbital elements
vTransThe resulting transfer velocities (3x2)
deltaVThe resulting delta-V's (3x2)
Returns
A flag indicating a feasible transfer was found that doesn't hit the Earth

References lambert::el1, lambert::el2, Lambert(), MU_EARTH, rv_orb_gen(), and sct_sign().

◆ Lambert()

ml_matrix Lambert ( const ml_matrix &  r1,
const ml_matrix &  r2,
double  dT,
int  tM,
double  mu,
double &  a,
double &  p,
int  maxIter,
double  tol 
)

Solves the Lambert time of flight problem using Battin's method.

MATLAB Form:

[vT, a, p, tol] = Lambert( r1, r2, dT, tM, tol, maxIter )

Parameters
r1(3,1) Initial position vector
r2(3,1) Final position vector
dTTime between position 2 and 1
tMdirect (1) or retrograde (-1)
muGravitational parameter
aResulting semi-major axis of the trajectory
pResulting parameter for the orbit
Returns
Matrix (3,2) Transfer velocity

References: Battin, R. H. "An Introduction to the Mathematics and Methods of Astrodynamics", AIAA Education Series.

Vallado, D. A. Fundamentals of Astrodynamics and Applications.

References PI.

Referenced by lambert_tof(), and Target().