Path: Common/Control
% Use eigevector assignment to design an estimator. Complex lambdas must be in pairs. Their corresponding eigenvectors must also be complex. The design matrix, d. One column per state. Each row relates vD to the plant matrix. For example, rows 7 and 8 relate column 3 in vD to the plant. In this case vD(1,3) relates to state 2 and vD(2,4) relates to state 3. vD need not have as many columns as states. rD gives the rows in D per eigenvalue Each column is for one eigenvalue i.e. column one means that the first three rows of D relat to eigenvalue 1 When you create statespace it should be: g = statespace( a, [], c ); -------------------------------------------------------------------------- Form: [k, v] = EVAssgnE( g, lambda, vD, d, rD ) -------------------------------------------------------------------------- ------ Inputs ------ g (:) Statespace system lambda (n) Desired eigenvalues vD (:,n) Desired eigenvectors d (:,n) Design matrix rD (n) Rows in d per eigenvalue ------- Outputs ------- k Gain matrix v Achieved eigenvectors --------------------------------------------------------------------------
Common: Classes/@statespace/and.m Common: Classes/@statespace/close.m Common: Classes/@statespace/connect.m Common: Classes/@statespace/eig.m Common: Classes/@statespace/get.m Common: Classes/@statespace/getabcd.m Common: Classes/@statespace/getsub.m Common: Classes/@statespace/isempty.m Common: Classes/@statespace/mtimes.m Common: Classes/@statespace/plus.m Common: Classes/@statespace/series.m Common: Classes/@statespace/set.m Common: Classes/@statespace/statespace.m Common: Control/Append Common: Control/EVAssgnC Common: Control/Parallel Common: Control/Series Common: Control/SizeABCD Common: General/CellToMat Math: Solvers/LSSVD
Back to the Common Module page