Path: Common/Control
% Creates a linear quadratic regulator from a state space system. Create a regulator of the form u = -Kx minimizing the cost functional J = {(1/2)[u'ru + x'qx] + u'nx + x'nu}dt. Given the constraint: . x = ax + bu -------------------------------------------------------------------------- Form: [k, sinf] = QCR( a, b, q, r, n ) -------------------------------------------------------------------------- ------ Inputs ------ a Plant matrix (N,N) b Input matrix (N,M) q State cost matrix (N,N) r Input cost matrix (M,M) n State/input cost cross-coupling matrix (N,M) ------- Outputs ------- k Optimal gain sinf Solution to the matrix Ricatti equation -------------------------------------------------------------------------- References: Franklin, G.F., J.D. Powell, M.L. Workman, Digital Control of Dynamic Systems, 2nd Edition, Addison-Wesley, 1990, pp. 435-438. --------------------------------------------------------------------------
Common: Control/Riccati Math: MathUtils/Odd
Back to the Common Module page