Path: FormationFlying/Analysis
% Compare closed form Hills equations with other methods of propagation. We have two spacecraft flying in close proximity. Their relative motion may be expressed in the Hill's frame or the LVLH frame. Each is a rotating coordinate system centered on the reference spacecraft. This function takes an initial relative state and computes their future relative trajectories using a variety of different methods. These methods are described below: ABSOLUTE PROPAGATION ... then TRANSFORMATION --------------------------------------------- The two orbital element sets of [a i W w e M] are propogated over time using 3 different methods: - RVOrbgen (Keplerian elements), - FOrb (numeric integration with inverse square law gravity model) - FOrbHF (numeric integration with 2 zonal, 2 tesseral harmonics) The resulting r & v ECI coordinates of the absolute orbits are then transformed to the Hills frame for comparison. TRANSFORMATION ... then RELATIVE PROPAGATION --------------------------------------------- We first convert the initial orbital elements to absolute position and velocity in the ECI frame. We then transform the 2 absolute states to a relative state in the Hills frame. The relative position/ velocity over time is solved using 2 different methods: - HillsEqns (closed form solution of relative motion) - DiscreteHills (discretized state space propgation of linearized system) The table below outlines the different methods used: Propagation Frame Model Line Color ========================================================== Absolute Keplerian Blue Absolute Inverse Square Law Green Absolute Gravity Model with J2 Cyan Relative Discretized state space Red Relative Hills Equations Maroon Since version 7. -------------------------------------------------------------------------- Usage: [t, xAbsKepler, xAbsLoFi, xAbsHiFi, xRelDiscProp, xRelHills] = TestHillsEqns( elRef, xH0, nOrbits ); -------------------------------------------------------------------------- ------ Inputs ------ elRef (1,6) Initial reference orbit elements [a i W w e M] xH0 (6,1) Initial Hill's frame state [x;y;z; Vx;Vy;Vz] nOrbits (1) Number of orbits to simulate ------- Outputs ------- t (1,:) Time vector [sec] --- the following outputs are relative state time histories --- --- each state is computed in a different manner --- xAbsKepler (6,:) Orbits generated by propagating Keplerian elements xAbsLoFi (6,:) Lo-Fideltiy propagation of absolute orbits (simple inverse square law) xAbsHiFi (6,:) Hi-Fidelity propagation of absolute orbits (2 zonal and 2 tesseral harmonics) xRelDiscProp (6,:) Propagation of discretized linear equations of relative motion xRelHills (6,:) Relative motion computed using closed-form Hills equations --------------------------------------------------------------------------
FormationFlying: Coord/GetHillsMats FormationFlying: Coord/PCState FormationFlying: Dynamics/DiscreteHills FormationFlying: Dynamics/HillsEqns FormationFlying: Transformation/ECI2Hills FormationFlying: Transformation/Hills2ECI Orbit: GravityModels/LoadGravityModel Orbit: OrbitCoord/SLR Orbit: OrbitMechanics/RVOrbGen Orbit: RHSOrbit/LinOrb SC: BasicOrbit/CP2I SC: BasicOrbit/E2M SC: BasicOrbit/E2Nu SC: BasicOrbit/M2E SC: BasicOrbit/M2EApp SC: BasicOrbit/M2EEl SC: BasicOrbit/M2EHy SC: BasicOrbit/Nu2E SC: BasicOrbit/Nu2M SC: BasicOrbit/OrbRate SC: BasicOrbit/RV2El Common: CommonData/SwooshWatermark Common: General/CellToMat Common: General/DeBlankLT Common: General/MatToCell Common: General/Watermark Common: Graphics/Axis3D Common: Graphics/Mesh2 Common: Graphics/NewFig Common: Graphics/Plot2D Common: Graphics/PltStyle Common: Graphics/TimeLabl Common: Graphics/XLabelS Common: Graphics/YLabelS Common: Graphics/ZLabelS Common: Time/JD2000 Math: Integration/RK4 Math: Linear/Cross Math: Linear/Dot Math: Linear/DupVect Math: Linear/Factorl Math: Linear/Mag
Back to the FormationFlying Module page