Path: Interplanetary/LowEnergyManeuver
% Compute the lissajous trajectory about a collinear libration point
Type Lissajous for a demo.
-------------------------------------------------------------------------------
Form:
[x1,x2,x3,Ay,t] = Lissajous( system, point, Ax, Az, phiXY, phiZ, N )
-------------------------------------------------------------------------------
------
Inputs
------
system (1,:) Name of two-body system, options:
- 'SEM' Sun - Earth/moon
- 'EM' Earth - moon
point (1,1) Libration point number (1 or 2)
Ax (1,1) x amplitude
Az (1,1) z amplitude
phiXY (1,1) Initial phase offset in x-y plane
(measured positive from -x to +y axis)
phiZ (1,1) Initial phase offset in z-axis
N (1,1) Number of periods to compute trajectory over
(entering 0 returns initial conditions)
-------
Outputs
-------
x1 (6,1) Trajectory computed from continuous solution [x;y;z;dx;dy;dz]
x = -Ax*cos( wXY*t + phiXY )
y = (Ax/k)*sin( wXY*t + phiXY )
z = Az*sin( wXY*t + phiZ )
x2 (6,1) Trajectory integrated using RK4
x3 (6,1) Trajectory integrated using ode45
Ay (1,1) y amplitude (equal to Ax/k, where k is from LibrationData)
t (1,:) Time vector
-------------------------------------------------------------------------------
Reference: Farquar, Robert, "The Control and Use of Libration Point
Satellites", Goddard Space Flight Center, NASA TR R-346,
September 1970.
-------------------------------------------------------------------------------
Interplanetary: LowEnergyManeuver/LibrationCoeff Interplanetary: LowEnergyManeuver/LibrationData Interplanetary: LowEnergyManeuver/LibrationRHS Interplanetary: LowEnergyManeuver/LibrationRHSODE45 Common: General/IsVersionAfter Common: Graphics/NewFig Math: Integration/RK4 Math: Linear/Mag
Back to the Interplanetary Module page