Path: StraightLine/SLPowerLimited
% Trajectory for an ideal power-limited rocket (straight-line) from lambda
This is for a rendezvous to distance dF. The optimal power and mass
fractions are computed from the payload fraction, engine specific power
and tank fraction. The acceleration profile is linear:
a(t) = A*(tF/2-t)
a is acceleration, A is a constant, t is mission time, tF is the final
time.
Type SLPLTrajectory for a demo.
--------------------------------------------------------------------------
Form:
SLPLTrajectoryLambda; % demo
[t,d,v,a,m,uE,T] = SLPLTrajectoryLambda( lambda, dF, sigma, f )
--------------------------------------------------------------------------
------
Inputs
------
lambda (1,:) Payload fraction (0-1)
dF (1,:) Distance (km)
sigma (1,:) Engine specific power (W/kg)
f (1,:) Fuel tank fraction (0-1), default 0
-------
Outputs
-------
t (1,:) Time vector (s)
d (1,:) Distance (km)
v (1,:) Velocity at t (km/s)
a (1,:) Acceleration at t (m/s^2)
m (1,:) Mass fraction at t (m/m0)
uE (1,:) Exhaust velocity at t (km/s)
T (1,:) Thrust at t, (N/kg)
--------------------------------------------------------------------------
Reference: Leitmann, George. "Minimum Transfer Time for a Power-Limited
Rocket." Journal of Applied Mechanics 28, no. 2 (June 1,
1961): 171-78. https://doi.org/10.1115/1.3641648.
--------------------------------------------------------------------------
StraightLine: SLPowerLimited/OptimalSLPL Common: Database/Constant Common: Graphics/DistanceLabel Common: Graphics/Plot2D Common: Graphics/TimeLabl
Back to the StraightLine Module page