Path: StraightLine/SLPowerLimited
% Trajectory for an ideal power-limited rocket (straight-line) from lambda This is for a rendezvous to distance dF. The optimal power and mass fractions are computed from the payload fraction, engine specific power and tank fraction. The acceleration profile is linear: a(t) = A*(tF/2-t) a is acceleration, A is a constant, t is mission time, tF is the final time. Type SLPLTrajectory for a demo. -------------------------------------------------------------------------- Form: SLPLTrajectoryLambda; % demo [t,d,v,a,m,uE,T] = SLPLTrajectoryLambda( lambda, dF, sigma, f ) -------------------------------------------------------------------------- ------ Inputs ------ lambda (1,:) Payload fraction (0-1) dF (1,:) Distance (km) sigma (1,:) Engine specific power (W/kg) f (1,:) Fuel tank fraction (0-1), default 0 ------- Outputs ------- t (1,:) Time vector (s) d (1,:) Distance (km) v (1,:) Velocity at t (km/s) a (1,:) Acceleration at t (m/s^2) m (1,:) Mass fraction at t (m/m0) uE (1,:) Exhaust velocity at t (km/s) T (1,:) Thrust at t, (N/kg) -------------------------------------------------------------------------- Reference: Leitmann, George. "Minimum Transfer Time for a Power-Limited Rocket." Journal of Applied Mechanics 28, no. 2 (June 1, 1961): 171-78. https://doi.org/10.1115/1.3641648. --------------------------------------------------------------------------
StraightLine: SLPowerLimited/OptimalSLPL Common: Database/Constant Common: Graphics/DistanceLabel Common: Graphics/Plot2D Common: Graphics/TimeLabl
Back to the StraightLine Module page