SLPLTrajectoryLambda:

Path: StraightLine/SLPowerLimited

% Trajectory for an ideal power-limited rocket (straight-line) from lambda
 This is for a rendezvous to distance dF. The optimal power and mass
 fractions are computed from the payload fraction, engine specific power
 and tank fraction. The acceleration profile is linear:

   a(t) = A*(tF/2-t)

 a is acceleration, A is a constant, t is mission time, tF is the final
 time.

 Type SLPLTrajectory for a demo.
--------------------------------------------------------------------------
	  Form:
        SLPLTrajectoryLambda; % demo
   [t,d,v,a,m,uE,T] = SLPLTrajectoryLambda( lambda, dF, sigma, f )
--------------------------------------------------------------------------

   ------
   Inputs
   ------
   lambda  (1,:) Payload fraction (0-1)
   dF      (1,:) Distance (km)
   sigma   (1,:) Engine specific power (W/kg)
   f       (1,:) Fuel tank fraction (0-1), default 0

   -------
   Outputs
   -------
   t       (1,:) Time vector (s)
   d       (1,:) Distance (km)
   v       (1,:) Velocity at t (km/s)
   a       (1,:) Acceleration at t (m/s^2)
   m       (1,:) Mass fraction at t (m/m0)
   uE      (1,:) Exhaust velocity at t (km/s)
   T       (1,:) Thrust at t, (N/kg)

--------------------------------------------------------------------------
   Reference: Leitmann, George. "Minimum Transfer Time for a Power-Limited
              Rocket." Journal of Applied Mechanics 28, no. 2 (June 1,
              1961): 171-78. https://doi.org/10.1115/1.3641648.
--------------------------------------------------------------------------

Children:

StraightLine: SLPowerLimited/OptimalSLPL
Common: Database/Constant
Common: Graphics/DistanceLabel
Common: Graphics/Plot2D
Common: Graphics/TimeLabl

Back to the StraightLine Module page