PlanarHelioRendezvousOptimal:

Path: Interplanetary/Optimization

% Compute optimal planar trajectory with a phase constraint.
 The specification of phase angles allows the transfer to be part of a
 planned rendezvous mission. This is a fixed-time transfer. The control
 variables are the angle and the constant thrust magnitude.

 This is for an electric propulsion system characterized by specific
 impulse, specific power, and a fuel tank fraction. The cost function is
 the total mass of the vehicle. Requires the Optimization Toolbox from
 Mathworks.

 Specific combinations of parameters may not provide a solution. fmincon will
 fail to converge in that case. The power is calculated from the thrust,
 exhaust velocity, and thrust efficiency. The engine mass is calculated from
 the specific power.

   P  = 0.5 T*uE/eta
   mE = P/sigma

 The total mass is

   m0 = mP + (1 + f)*mF + mE

 where mP is the mass of the payload, f is the fuel structural fraction, and mE
 is the mass of the engine.

 Type PlanarHelioRendezvousOptimal for a demo to Mars
--------------------------------------------------------------------------
  Form:
  d0 = PlanarHelioRendezvousOptimal
  [phi, thrust, t, data] = PlanarHelioRendezvousOptimal( d, maxIter, iterDisp )
--------------------------------------------------------------------------

   ------
   Inputs
   ------
   d     	(.)   Data structure
                 .uE          Exhaust velocity (km/s)
                 .r0          Initial radius (km)
                 .rF          Final radius (km)
                 .angleOffset Initial phase angle (rad)
                 .angleTarget Target phase angle (rad)
                 .mu        Gravitational parameter of the sun (km^3/s^2)
                 .f         Fuel structural fraction
                 .tF        Final time (s)
                 .eta       Thrust efficiency
                 .sigma     Specific power (W/kg)
                 .scale     [distance; v radial; v tangential; angle]
   maxIter	(1,1)	Maximum number of iterations
   iterDisp ''   Display mode, default 'iter-detailed'
   thrust0 (1,1) Thrust value (default 0.9), optional
   phi0    (1,:) Initial guess for control angles, optional

   -------
   Outputs
   -------
   phi     (1,n) Thrust angle (rad)
   t       (1,n) Times (s)
   thrust  (1,1) Thrust (N)
   data     (.)  Results data structure
                 .p  (1,1) Power       (W)
                 .mD (1,1) Dry mass   (kg)
                 .mF (1,1) Fuel mass  (kg)
                 .dV (1,1) Delta-V  (km/s)
                 .dF (1,1) Final distance achieved (km)
                 .vF (1,1) Final velocity achieved (km/s)

--------------------------------------------------------------------------
   See also SimulatePlanarHelioTrajectory, PlanarHelioOptimalSlidingTime,
   ThrustElectric
--------------------------------------------------------------------------

Children:

Interplanetary: Optimization/RHS2DCylindricalOrbit
Interplanetary: Optimization/SimulatePlanarHelioTrajectory
StraightLine: ConstantAccel/ThrustElectric
StraightLine: ConstantThrust/DVConstantThrust
Common: Database/Constant
Math: Integration/RK4
Math: Linear/Mag

Back to the Interplanetary Module page