Path: Interplanetary/Optimization
% Compute optimal planar trajectory with a phase constraint. The specification of phase angles allows the transfer to be part of a planned rendezvous mission. This is a fixed-time transfer. The control variables are the angle and the constant thrust magnitude. This is for an electric propulsion system characterized by specific impulse, specific power, and a fuel tank fraction. The cost function is the total mass of the vehicle. Requires the Optimization Toolbox from Mathworks. Specific combinations of parameters may not provide a solution. fmincon will fail to converge in that case. The power is calculated from the thrust, exhaust velocity, and thrust efficiency. The engine mass is calculated from the specific power. P = 0.5 T*uE/eta mE = P/sigma The total mass is m0 = mP + (1 + f)*mF + mE where mP is the mass of the payload, f is the fuel structural fraction, and mE is the mass of the engine. Type PlanarHelioRendezvousOptimal for a demo to Mars -------------------------------------------------------------------------- Form: d0 = PlanarHelioRendezvousOptimal [phi, thrust, t, data] = PlanarHelioRendezvousOptimal( d, maxIter, iterDisp ) -------------------------------------------------------------------------- ------ Inputs ------ d (.) Data structure .uE Exhaust velocity (km/s) .r0 Initial radius (km) .rF Final radius (km) .angleOffset Initial phase angle (rad) .angleTarget Target phase angle (rad) .mu Gravitational parameter of the sun (km^3/s^2) .f Fuel structural fraction .tF Final time (s) .eta Thrust efficiency .sigma Specific power (W/kg) .scale [distance; v radial; v tangential; angle] maxIter (1,1) Maximum number of iterations iterDisp '' Display mode, default 'iter-detailed' thrust0 (1,1) Thrust value (default 0.9), optional phi0 (1,:) Initial guess for control angles, optional ------- Outputs ------- phi (1,n) Thrust angle (rad) t (1,n) Times (s) thrust (1,1) Thrust (N) data (.) Results data structure .p (1,1) Power (W) .mD (1,1) Dry mass (kg) .mF (1,1) Fuel mass (kg) .dV (1,1) Delta-V (km/s) .dF (1,1) Final distance achieved (km) .vF (1,1) Final velocity achieved (km/s) -------------------------------------------------------------------------- See also SimulatePlanarHelioTrajectory, PlanarHelioOptimalSlidingTime, ThrustElectric --------------------------------------------------------------------------
Interplanetary: Optimization/RHS2DCylindricalOrbit Interplanetary: Optimization/SimulatePlanarHelioTrajectory StraightLine: ConstantAccel/ThrustElectric StraightLine: ConstantThrust/DVConstantThrust Common: Database/Constant Math: Integration/RK4 Math: Linear/Mag
Back to the Interplanetary Module page