FFEccFrameCompare:

Path: FormationFlying/Analysis

% Compare two methods of computing the relative motion in an eccentric orbit.
 The first case uses the homogenous LTV solution to Lawden's equations.

 The second case computes the absolute trajectories of both orbits in
 the ECI frame, then transforms into the relative Hill's frame.

   Note: The reference elements are provided, defining one orbit. The initial
         relative state is also provided, which is added to the initial
         reference state to define the second orbit.

--------------------------------------------------------------------------
   Form:
   [xH1,xH2] = FFEccFrameCompare( elRef0, xH0, nOrbits, nS, method );
--------------------------------------------------------------------------

   ------
   Inputs
   ------
   elRef0          (1,6)  Initial elements of reference orbit
   xH0             (6,1)  Initial state in Hills frame
   nOrbits          (1)   Number of orbits to simulate
   nS               (1)   Number of samples to use
   method           (1)   Indicate which method to use for initialization
                             0 - do not enforce periodic motion, use supplied xH0 exactly 
                             1 - enforce periodic, symmetric motion about origin
                             2 - enforce periodic motion via fuel optimization
                             3 - enforce periodic motion using the velocity constraint
                                 (only change y-velocity)

   -------
   Outputs
   -------
   xH1             (6,nS) Relative state trajectory from first case
   xH2             (6,nS) Relative state trajectory from second case

--------------------------------------------------------------------------
   References: Inalhan, Tillerson, How, "Relative Dynamics and Control of
   Spacecraft Formations in Eccentric Orbits", Journal of Guidance,
   Control & Dynamics, Vol.25, No.1, Jan-Feb 2002.
--------------------------------------------------------------------------

Children:

FormationFlying: Coord/GetHillsMats
FormationFlying: EccDynamics/FFEccDH
FormationFlying: EccDynamics/FFEccDMatPeriodic
FormationFlying: EccDynamics/FFEccIntConst
FormationFlying: EccDynamics/FFEccLawdensEqns
FormationFlying: EccDynamics/FFEccRMat
FormationFlying: Transformation/ECI2Hills
FormationFlying: Transformation/Hills2ECI
FormationFlying: Utility/Nu2TimeDomain
FormationFlying: Utility/NuDot
FormationFlying: Utility/Time2NuDomain
Orbit: OrbitCoord/SLR
Orbit: OrbitMechanics/RVOrbGen
SC: BasicOrbit/CP2I
SC: BasicOrbit/E2M
SC: BasicOrbit/E2Nu
SC: BasicOrbit/El2RV
SC: BasicOrbit/M2E
SC: BasicOrbit/M2EApp
SC: BasicOrbit/M2EEl
SC: BasicOrbit/M2EHy
SC: BasicOrbit/M2Nu
SC: BasicOrbit/M2NuPb
SC: BasicOrbit/Nu2E
SC: BasicOrbit/Nu2M
SC: BasicOrbit/OrbRate
SC: BasicOrbit/Period
SC: BasicOrbit/RV2El
Common: CommonData/SwooshWatermark
Common: General/CellToMat
Common: General/DeBlankLT
Common: General/DispWithTitle
Common: General/MatToCell
Common: General/Watermark
Common: Graphics/Axis3D
Common: Graphics/Mesh2
Common: Graphics/NewFig
Common: Graphics/Plot2D
Common: Graphics/PltStyle
Common: Graphics/TimeLabl
Common: Graphics/XLabelS
Common: Graphics/YLabelS
Common: Graphics/ZLabelS
Math: Linear/Cross
Math: Linear/Dot
Math: Linear/DupVect
Math: Linear/Mag

Back to the FormationFlying Module page